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Opinion Dynamics over Influence Networks
Zahra Askarzadeh, Rui Fu, Abhishek Halder, Yongxin Chen, and Tryphon T. Georgiou

Abstract— The state of a societal group that is driven by social
interactions amongst its members can be modeled as a probability
vector, representing the relative strength of one’s opinion within the
group, that dictates the likely outcome of future interactions. Social
interaction is then modeled by dynamics on the probability simplex,
where the next state (probability vector) depends on the previous in
a nonlinear manner that reflects interaction akin to McKean-Vlasov
dynamics. In this short paper we outline theory that has been recently
developed, and provide extensions, that rely on contractiveness of the
state transition in the `1-norm. Our approach has links to other recent
advances on monotone maps and differential positive systems.
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I. OVERVIEW

Models of social interaction has been the subject of a rapidly
growing literature, see e.g. [1], [2], [3], [4], [5], [6], [7]. In the
present note we overview recent developments [8] for a class of
such models that have been motivated by the DeGroot-Friedkin
dynamics, proposed and analyzed in [1], and we discuss general-
izations.

The state of the pertinent system of agents is represented by
a probability vector on the nodes (representing agents) that reflects
the individual’s self-confidence within the social structure, or their
influence within the group. The discrete time index in the original
model [1] represented issues being discussed. We consider several
variants where the state is updated in real (running) time, without
waiting for a consensus to be reached on issues. In doing so, we
study maps

f : Sn−1 → Sn−1 : p 7→ f(p) (1a)

that preserve the probability simplex (of column vectors p)

Sn−1 := {p ∈ Rn | pi ≥ 0,
∑
i

pi = 1}.

Without loss of generality f(p) can be written in the form

f(p) = Π(p)Tp (1b)

where Π(p) is a row stochastic matrix that depends (possibly
nonlinearly) on the entries of p, though, such a representation may
not be unique in general. We focus on a particular structure of such
maps where

Π(p)T = CT
0 D(p) +CT

1 (I −D(p)), (1c)

with C0, C1 both row stochastic, and D(p) diagonal with entries
in [0, 1]; a typical special case being when C0 is the identity matrix.
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Note that Π(p) has nonnegative entries with rows summing to one
for all p ∈ Sn−1. Depending on the values of the entries of D(p),
the matrices C0, C1 may model different aspects of interaction
between agents (enhancing or diminishing influence of particular
links between individuals).

We often specialize to the case whereC0 is the identity matrix
and C1 = C = [C]nij=1 encodes the influence of neighboring
agents. Of particular interest are the exponentially-scaled transition
kernel

Πij(x) = (1− e−γxi)δij + e−γxiCij , and its “opposite” (2a)

Πij(x) = e−γxiδij + (1− e−γxi)Cij , (2b)

as well as linearly-scaled kernels

Πij(x) = γxiδij + (1− γxi)Cij , and (3a)

Πij(x) = (1− γxi)δij + γxiCij , (3b)

see [1]. Those two types of models provide rather insightful
examples of the dynamics that one can expect from such social
interactions.

In general, the nonlinear dynamics may display the complete
spectrum of possible effects such as multiple equilibria, periodic
orbits, and chaotic behavior. Models that capture such effects in
social interactions originate in [9], [10], [11], [12], [13]. Among
models proposed for opinion dynamics, the DeGroot model [9],
the Friedkin-Johnson model [13], and the Krause model [12] have
received the most attention. Several variations have also been pro-
posed. For example, Xu etal. [14] introduced a Modified DeGroot-
Friedkin model and analyzed it for the special case of doubly
stochastic influence network, while Jia etal. [15] provided an anal-
ysis for the general case. Chen etal. in [2] proposed a continuous-
time self-appraisal model. Tabatabaei etal. [16] considered possible
effects of the group having “stubborn” individuals, and Ye etal. [17]
considered dynamically changing network topologies.

The purpose of this article is to highlight an approach on
stability analysis in [8] that relies on contractivity in `1 and
provides easy-to-check sufficient conditions. In fact, the `1 distance
represents a Finsler-Lyapunov function for stochastic maps [18],
i.e., for maps preserving the simplex. This fact relates to structural
monotonicity properties as brought out in [19], [20], [21]. Our
approach differs from earlier literature which focuses mostly on
continuous flows, although it relies on a similar conceptual setting
(cf. [18], [19]). Following on in the present paper, we discuss
continuous-time counterpart of the models as well as other exten-
sions of the theory.

II. CONTRACTION OF `1-DISTANCES

It is standard and easy to show that if Π is a constant
row stochastic matrix, the map p 7→ ΠTp contracts in `1 (or,
total variation). It is strictly contractive when all entries of Π are
positive. Similar conclusions can be drawn for nonlinear maps of
the particular form in (1). We discuss this next.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 233 submitted to 2019 American Control Conference.
Received September 26, 2018.



SEPTEMBER 26, 2018 2

Denote by T the tangent space of the probability simplex, i.e.,

T := {δ ∈ Rn | 1T δ = 0}

with 1 a column vector of 1’s. The Jacobian maps T → T and is

df : (δj)
n
j=1 7→

(
n∑
i=1

Πijδi

)n
j=1

+

 n∑
i,k=1

∂Πij

∂pk
piδk

n

j=1

or, in a vectorial form

df : δ 7→

ΠT +

[
∂ΠT

∂p1
p, . . . ,

∂ΠT

∂pn
p

]
︸ ︷︷ ︸

QT

 δ. (4)

Since 1TCT
i = 1T , for i ∈ {0, 1}, the columns on the second

entry in the expression for QT satisfy

1
T

(
∂ΠT

∂pj
p

)
= 1

T

(
CT

0
∂D

∂pj
p−CT

1
∂D

∂pj
p

)
= 0.

Hence,
1
TQT = 1

TΠT = 1
T . (5)

The following key result is a consequence that, for the particular
structure (1), the Jacobian satisfies (5) pointwise, i.e., for all p ∈
Sn−1. The idea is to consider the image of a path between two
points pa and pb, and estimate the distance between their images
under f , showing that it contracts. The result is now given without
proof below (for a proof see [8]).

Theorem 1: Let f(·) be as in (1) with D(p) continuously
differentiable, and suppose that the Jacobian matrix Q defined in
(4) has strictly positive entries in Son−1. The following hold:

(a) f is strictly contractive in `1 in compact subsets of Son−1.

(b) Provided f has a fixed point in Son−1, this fixed point is the
only fixed point and it is globally attracting.

For details we refer to the arXiv report [8].

Corollary 2: Let matrix [Πij(p)]nij=1 be row-stochastic and
differentiable in p, and that p? is a fixed point of the map f in
(1a), i.e., p? = Π(p?)p?. Suppose that the Jacobian of the map f
evaluated at p? is such that, for a suitable integer m,

(df |p?)m

has strictly positive entries. Then p? is locally attractive.

Corollary 3: Let matrix [Πij(p)]nij=1 be row-stochastic and
differentiable in p, and that pi, for i = 0, 1, 2, . . . ,m − 1, is a
periodic orbit for f in (1a), i.e., p(i+1)mod(m) = f(p(i)mod(m)).
Suppose that the product of the Jacobians(

df |p(i+m)mod(m)

)
. . .
(
df |p(i)mod(m)

)
has strictly positive entries for some i. Then, the periodic orbit is
locally attractive.

A bound on the induced `1-incremental gain of stochastic
maps in terms of the induced `1-gain of the Jacobian

‖df |T ‖(1) := max{‖QT δ‖1 | 1T δ = 0, ‖δ‖1 = 1}

is given next. It strengthens the applicability of the approach by
relaxing the positivity requirement on the Jacobian.

Proposition 4: Let f be a differentiable stochastic map as in
(1a) and as before, the Jacobian df(p)|T is represented by a matrix
Q(p)T . For any pb,pa ∈ Sn−1,

‖f(pb)− f(pa)‖1 ≤ max
p∈Sn−1

‖df(p)|T ‖(1)‖pb − pa‖1,

and, in general,

‖df |T ‖(1) =
1

2
max
j,k

n∑
i=1

|(Q(p))ji − (Q(p))ki|. (6)

The quantity (6) for the induced `1-norm of linear maps
is the so-called Markov-Dobrushin coefficient of ergodicity [22],
[23], [24], [25] that characterizes the contraction rate of Markov
operators with respect to this norm (also, total variation). For
nonlinear operators on probability simplices (nonlinear Markov
Chains, see [26, Chapter 1]), the same is true. These propositions
help provide certificates for stability of equilibria p? and highlight
that the `1-distance is a Finsler-Lyapunov function in the sense of
Forni and Sepulchre [18]. Thus, `1-contractivity of the dynamics
pnext = f(p), and stability of fixed points or periodic orbits, may
be deduced from the infinitesimal properties of f in the `1-metric.
The approach is illustrated in the next sections.

III. EXPONENTIAL-INFLUENCE MODELS

We analyze a few representative cases of (1) for D(p) =
diag(r1(p), . . . , rn(p)) where ri(p) is either 1− e−γpi or e−γpi ,
for some γ > 0. The first choice satisfies ri(0) = 0 and r′i(0) = γ,
and thereby reinforces sites with relatively high values (entries of
p). The second choice has ri(0) = 1 and r′i(0) = −γ, has the
tendency to do the opposite. Throughout we assume that C is an
irreducible acyclic row-stochastic matrix, and we denote by c the
unique (positive) Frobenius-Perron left eigenvector, i.e., c satisfies

CT c = c,

and is normalized so that 1T c = 1. Because of the irreducibility
assumption, c has positive entries.

Case r(x) = 1− e−γx for γ ≤ 1 : We sum up the main conclu-
sions in the following proposition.

Proposition 5: For any γ ∈ [0, 1] consider

p(k) 7→ f(p(k)) =: p(k + 1), where (7a)

f(p(k)) =
(

diag(1− e−γp(k)) +CT diag(e−γp(k))
)
p(k).

(7b)

The map f is contractive in `1 and, starting from an arbitrary
p(0) ∈ Sn−1, the limit p? = limk→∞ p(k) exists, is unique, and
its entries satisfy e−γp

?
i p?i = κci, for some κ > 0.

The proof relies on the fact that the differential dfm(·) is
strictly contractive (cf. Corollary 2 of Theorem 1) and is detailed
in our arXiv report [8].

Case r(x) = 1− e−γx for γ > 1: This case is substantially
different. Here, there can be several attractive points of equilibrium
for the nonlinear dynamics in (7) and even more complicated
nonlinear behavior. In fact, we believe that such a behavior may be
more appropriate for models of opinion dynamics as it is reasonable
to expect a different outcome depending on the starting point (that
encapsulates confidence/beliefs of individuals). We illustrate the
behavior with two numerical examples for 3-state dynamics to
highlight differences with the case when γ ≤ 1.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 233 submitted to 2019 American Control Conference.
Received September 26, 2018.



SEPTEMBER 26, 2018 3

1) Example: We consider (7) for a 3-state system (i.e., n = 3)
with γ = 4 and

C =

0.8 0.1 0.1
0.4 0.2 0.4
0.4 0.4 0.2

 . (8)

The left Frobenius-Perron eigenvector of C is (2/3, 1/6, 1/6)T .
The fixed-point conditions for possible stationary distributions
become

e−4p?1p?1 = κ
2

3
, e−4p?2p?2 = κ

1

6
, 2p?2 + p?1 = 1.

Upon eliminating κ between the first two, and substituting p1 in
terms of p2, we obtain

1− 2p?2
p?2

e−4(1−3p?2) = 4. (9)

This equation has the unique solution

p? := (0.9904, 0.0048, 0.0048)T .

It turns out that this is a locally attractive fixed point. This can be
verified by evaluating the Jacobian of f at p? as

df |p? =

 1.0113 0.3849 0.3849
−0.0056 0.2303 0.3849
−0.0056 0.3849 0.2303

 .
Even though the Jacobian has negative entries, it is still strictly
contractive. Indeed, we explicitly evaluate the induced gain using
Lemma 4 and this is

‖df |T ‖(1) =
1

2
max{1.2528, 1.2528, 0.3092} = 0.6264 < 1.

Thus p? is a stable fixed point. This analysis is consistent with
simulations shown in Fig. 1. In the figure we depict trajectories (in
different color) starting from random initial conditions that clearly
tend to p?.
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Fig. 1: Convergence of trajectories to a unique fixed point for the
3-state exponential model (7) with γ = 4 and influence matrix C
given by (8).

2) Example: Once again we consider a 3-state system with
γ = 4, but this time we take

C =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 . (10)
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Fig. 2: For the 3-state exponential model (7) with γ = 4 and
influence matrix C given by (10), trajectories converge to one of
the three stable fixed points.

The fixed-point equations have 7 solutions (taking into account
symmetries). Out of those, three are attractive fixed points with
coordinates cyclically selected from {1 − a, a/2, a/2} for a =
0.046. The remaining four are unstable fixed points. One is at
the center (1/3, 1/3, 1/3)T (due to symmetry), and the rest have
coordinates cyclically selected from {1 − a, a/2, a/2} for a =
0.874. Just like the previous example, we can verify stability by
computing the Jacobian df at fixed points. For instance, for the
fixed point p?a = (0.954, 0.023, 0.023)T , we have

df |p?
a

=

 1.0620 0.4141 0.4141
−0.0310 0.1718 0.4141
−0.0310 0.4141 0.1718

 ,
and

‖df |T ‖(1) =
1

2
max{1.2958, 1.2958, 0.4846} = 0.6479 < 1.

Applying Lemma 4, we conclude that p?a is a stable fixed point.
For another fixed point p?b = (0.1260, 0.4370, 0.4370)T , we have

df |p?
b

=

0.7004 −0.0651 −0.0651
0.1498 1.1302 −0.0651
0.1498 −0.0651 1.1302

 ,
and

‖df |T ‖(1) =
1

2
max{1.9608, 1.9608, 2.3907} = 1.1954 > 1.

Numerical evidence shown in Fig. 2 confirms that p?a is stable and
p?b is unstable. Convergence of trajectories depends on the initial
conditions with respect to the basins of attraction for the three stable
fixed points. The qualitative behavior of the trajectories around the
four unstable and three stable fixed points is illustrated in Fig. 3.

Case r(x) = e−γx: When γ ≤ 1 there is a unique fixed point and
it is always globally attractive. The proof is detailed in our arXiv
report [8]. When γ > 1, again there exists a unique fixed point in
any dimension (any n) as well. However, in this case the nonlinear
dynamics display diverse behaviors. Below we give three examples.
In the first two the unique fixed point is attractive, but they differ,
in that assurances for stability are drawn (for the second example)
by computing the norm of the differential of higher iterants (2nd in

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 233 submitted to 2019 American Control Conference.
Received September 26, 2018.



SEPTEMBER 26, 2018 4

�

�

� �

•

• •

Fig. 3: The qualitative behavior of dynamics (7) with γ > 1 as
observed in Fig. 2, where three stable fixed points (solid circles) and
four unstable fixed points (empty circles) coexist on the simplex.
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Fig. 4: For the 3-state exponential model with γ = 4 and influence
matrix C given by (11), trajectories converge to the unique stable
fixed point p? = (1/3, 1/3, 1/3)T .

this case). In the third example we observe a 2−periodic attractive
orbit.

3) Example: We consider a 3-state system with γ = 4, and

C =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 . (11)

Since C is doubly stochastic, the unique fixed point is p? =
(1/3, 1/3, 1/3)T , and we have

df |p? =

−0.0880 0.5440 0.5440
0.5440 −0.0880 0.5440
0.5440 0.5440 −0.0880

 ,
and

‖df |p?‖(1) =
1

2
max{1.2640, 1.2640, 1.2640} = 0.6320 < 1.

Using Theorem 4, we conclude that p? is a stable fixed point.

4) Example: For γ = 4, now take

C =

 0 0 1
0.5 0.5 0
0.5 0.5 0

 .

The unique fixed point is again p? = (1/3, 1/3, 1/3)T . Here,

df |p? =

−0.0880 0.5440 0.5440
0 0.4560 0.5440

1.0880 0 −0.0880

 ,
and ‖df |p?‖(1) = 1.1760. However, ‖df2|p?‖(1) = 0.7911 which
ensures local attractiveness.

5) Example: Once again we consider a 3-state system with
γ = 4, but we now take

C =

 0 0 1
0.8 0 0.2
0.8 0.2 0

 . (12)

Uniqueness of a fixed point is guaranteed. This turns out to be

p? = (0.4173, 0.1537, 0.4298)T .

It turns out that

df |p? =

−0.1261 0.6333 0.9031
0 0.2084 0.2258

1.1261 0.1583 −0.1289


has `1-norm equal to 1.255, and so do the differentials of higher
order iterants. However, a stable 2-periodic orbit now appears
alternating between

pa=(0.1943, 0.1042, 0.7015)T and pb=(0.6450, 0.2005, 0.1545)T .

The periodic orbit is locally attractive. The Jacobians at these two
points are

df |pa =

0.1024 0.4923 0.8873
0 0.3846 0.2218

0.8976 0.1231 −0.1092


and

df |pb =

−0.1197 0.7290 0.6352
0 0.0888 0.1588

1.1197 0.1822 0.2060

 ,
respectively, and it can be verified that the norm of their product
is ‖df |padf |pb‖(1) = 0.8750. Interestingly, ‖df |pbdf |pa‖(1) =
0.7120, which is different, but < 1 too (as expected). Stability
can be ascertained by Corollary 3. An expalantion, as pointed out
by an anonymous referee, is that as a particular state gets “more
probable”, it actually is associated with “less confidence”, and hence
there is indecision oscillating between alternatives.

Remark 6: We discuss the DeGroot-Friedkin Model and its
Variants, where the nonlinear evolution corresponds to ri(p) = γpi
or 1 − γpi, for 0 < γ ≤ 1, in the arXiv report [8] and provide
analysis using the earlier theory.

IV. EXTENSIONS

We bring in two additional layers along which opinion models
can be expanded. First, it is quite interesting to speculate about
the effect of colluding sub-group in opinion forming. Indeed,
everyday experience suggests that opinion is often reinforced within
groups of like-minded individuals that draw confidence upon the
collective wisdom, or lack of. Second, a continuous flow of confi-
dence/influence in social interactions leads to nonlinear models of
the McKean-Vlasov type. These two topics are touched next.
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Fig. 5: For the 3-state exponential model with γ = 4, and C given
by (12), the unique fixed point p? = (0.4173, 0.1537, 0.4298)T is
unstable and there is an attractive 2-periodic orbit between pa and
pb, verified by the time history (insert graph).

A. Collusion among subgroups

To account for such interactions, we use a stochastic matrix W
to model the joint influence between group members by weighing
their collective states via r(Wp), which should be contrasted with
individual-reinforcement of opinion/confidence modeled by r(p).
This is independent and in addition to C, which is used to model
information flow over the total influence network. A reasonable
choice for W is to be block diagonal where the blocks correspond
to different subgroups of interacting individuals. The special case
where W is identity matrix reduces to the earlier setting.

In fact, what we propose herein is an “interacting particle”
analogue for nonlinear evolutions on the simplex, modeled as
follows:

p(t+ 1) = Π(p(t))Tp(t)

=
(

diag(r(Wp(t))) +CT (I − diag(r(Wp(t))))
)
p(t). (13)

In particular, using a fixed-point argument as in [1] and Brouwer’s
fixed point theorem, we can establish existence results for the cases
r(x) = x and r(x) = 1−e−x, and a general stochastic matrix W .

Proposition 7: Let r(x) = x or r(x) = 1 − e−x, and W a
stochastic matrix. Assume that ck < 1

2
for all k = 1, . . . , n. The

nonlinear model (13), has at least one fixed point in the interior of
Sn−1.

We sketch the proof. Any fixed point of (13) must satisfy

pj = Fj(p) :=
cj/(1− rj)∑
k ck/(1− rk)

.

It is a bit cumbersome but straightforward to show that

Fj(p) ≤ 1

1 +
∑
k 6=j

ck
cj(1−rk)

< 1− ε.

On the other hand, starting from

p ∈ Sε := {p ∈ Sn−1 | pi ≤ 1− ε, ∀i = 1, . . . , n},

it is easy to see r(Wp) ∈ Sε due to the facts that r(x) ≤ x and W
is stochastic. Since F (Sε) ⊂ Sε and F is continuous, by Brouwer’s
fixed-point theorem there exists p∗ such that p∗ = F (p∗).
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Fig. 6: For the 3-state model (13) with influence matrix C and
W given by (14), trajectories converge to the unique fixed point
p? = (0.6975, 0.1744, 0.1282)T .

The “nonlocal interaction” matrix W may in general introduce
negative off-diagonal elements in Jacobian matrix. The theory in
Section II applies on a case by case basis, but no general conclusion
can be drawn at this point regarding global stability of particular
class of models as we did earlier. Indeed, for r(x) = 1 − e−x, a
matrix representation of the differential (4) becomes

Q(p)T = diag(1− e−Wp) +CT diag(e−Wp)

+(I −CT ) diag(p ◦ e−Wp)W.

This, in general, has negative entries, which however doesn’t imply
that the fixed point is unstable. The theory in Section II applies
and attractiveness of equilibria can be ascertained by e.g., explicitly
computing the `1-gain of df |T .

For a numerical example in S2, take r(x) = 1− e−Wx,

C =

0.8 0.1 0.1
0.4 0.2 0.4
0.4 0.4 0.2

 , W =

0.5 0.5 0
0.5 0.5 0
0 0 1

 . (14)

Numerically (Fig. 6), we see that the system has a unique
fixed point, p? = (0.6975, 0.1744, 0.1282)T , which is stable. This
is consistent with element-wise positiveness of the Jacobian of (13)
which is evaluated at p?,

df |p? =

0.8932 0.2812 0.3068
0.0872 0.5052 0.3068
0.0196 0.2136 0.3865

 .
It’s worth mentioning that simulation with the same C but this time
with W = I3×3 gives p? = (0.8014, 0.0993, 0.0993)T . Hence, as
expected, the influence between member of the sub-group has a
strengthening effect.

B. Influence models over continuous time

The continuous space and time analogue of the nonlinear
model (13) is the nonlinear Fokker-Plank-Vlasov equation

ρt = ∆ρ+∇ · (ρ∇V (x)) +∇ · (ρ∇(

∫
W (x− y)ρ(y)dy)),
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which has been used to model the evolution of densities for inter-
acting particles systems under the influence of external potential V
and interacting potential W [27], [28].

V. CONCLUDING REMARKS

The theory allows drawing general conclusions on attractive-
ness of equilibria of nonlinear evolution models on probability
simplices, i.e., stochastic evolutions. Besides the current interest in
modeling dynamical interactions over social networks, the theory
applies more broadly as similar models are pertinent in other types
of interaction. Stability results as well as rates of convergence to
equilibrium are important. Future research should also focus the
effect of uncertainty and disturbances in such models.
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