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Optimal control of the Liouville equation

R. W. Brockett

Abstract. We explore the role of a special class of optimization problems

involving controlled Liouville equations. We present some new results on the

controllability of the Liouville equation and discuss the optimal control of its
moments for some important special cases. The problems treated suggest a new

domain of applicability for optimal control, one which can include constraints
more appropriate for the synthesis of control systems for a large class of real

world systems.

1. Introduction

In this paper we argue that some of the important limitations standing in the
way of the wider use of optimal control can be circumvented by explicitly acknowl-
edging that in most situations the apparatus implementing the control policy will
judged on its ability to cope with a distribution of initial states, rather than a single
state. This makes it appropriate to represent the system dynamics in terms of its
Liouville equation and to formulate performance measures in that setting. That is,
we argue in favor of replacing the usual control model ẋ = f(x, u) by the first order
partial di↵erential equation
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and for the consideration of performance measures which include non trajectory
dependent terms such as the second and third terms on the right-hand side of
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Later on we give a number of examples to support our contention but, in brief,
we may say that by forcing the specification of a range of initial conditions this
formulation allows one to include some important types of performance measures
not expressible in standard deterministic optimal control theory. In specific cases
this allows the designer to express, in mathematical terms, issues related to the
role of feedback, robustness and cost of implementation. This approach has some
aspects in common with stochastic control but occupies a position of intermediate
complexity, lying between deterministic calculus of variations on finite dimensional
manifolds and, the usually much less tractable, control of finite dimensional di↵u-
sion processes.

In almost all applications of automatic control there is a trade o↵ between the
gains to be had from trajectory optimization and the cost of the apparatus required
to implement the optimal policy. A simpler apparatus that generates commands
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Chapter 2
Notes on the Control of the Liouville Equation

Roger Brockett

Abstract In these notes we motive the study of Liouville equations having
control terms using examples from problem areas as diverse as atomic physics
(NMR), biological motion control and minimum attention control. On one hand,
the Liouville model is interpreted as applying to multiple trials involving a single
system and on the other, as applying to the control of many identical copies
of a single system; e.g., control of a flock. We illustrate the important role the
Liouville formulation has in distinguishing between open loop and feedback control.
Mathematical results involving controllability and optimization are discussed along
with a theorem establishing the controllability of multiple moments associated with
linear models. The methods used succeed by relating the behavior of the solutions
of the Liouville equation to the behavior of the underlying ordinary differential
equation, the related stochastic differential equation, and the consideration of the
related moment equations.

2.1 Introduction

In these notes we describe a number of problems in automatic control related to the
Liouville equation and various approximations of it. Some of these problems can
be cast either in terms of designing a single feedback controller which effectively
controls a particular system over repeated trials corresponding to different initial
conditions or, alternatively, using a broadcast signal to simultaneously control many
copies of a particular system. Sometimes these different points of view lead to
problems that are identical from the mathematical point of view. In many cases a
certain continuum limit can be formulated, either by considering an infinity of trials
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Abstract—We consider the problem of steering a linear dy-
namical system with complete state observation from an initial
Gaussian distribution in state-space to a final one with minimum
energy control. The system is stochastically driven through the
control channels; an example for such a system is that of an inertial
particle experiencing random “white noise” forcing. We show that
a target probability distribution can always be achieved in finite
time. The optimal control is given in state-feedback form and is
computed explicitly by solving a pair of differential Lyapunov
equations that are nonlinearly coupled through their boundary
values. This result, given its attractive algorithmic nature, appears
to have several potential applications such as to quality control,
control of industrial processes, as well as to active control of
nanomechanical systems and molecular cooling. The problem to
steer a diffusion process between end-point marginals has a long
history (Schrödinger bridges) and the present case of steering a
linear stochastic system constitutes such a Schrödinger bridge
for possibly degenerate diffusions. Our results provide the first
implementable form of the optimal control for a general Gauss–
Markov process. Illustrative examples are provided for steering
inertial particles and for “cooling” a stochastic oscillator. A final
result establishes directly the property of Schrödinger bridges as
the most likely random evolution between given marginals to the
present context of linear stochastic systems. A second part to this
work, that is to appear as part II, addresses the general situation
where the stochastic excitation enters through channels that may
differ from those used to control.

Index Terms—Linear stochastic system, Schrödinger bridge,
stochastic control.

I. INTRODUCTION

THE most basic paradigm in optimal control deals with the
steering of a dynamical system between two end-points in

time, while minimizing a suitable cost functional—here, the ex-
pected quadratic integral of the control input. The specifications
for the marginal conditions are either explicit, requiring that the
value of the state vector belongs to a specified set, or implicit,
penalizing the distance of the state vector from a target location.
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In the presence of a stochastic disturbance, in both cases,
the end-point conditions may be further modified accordingly.
For instance, a bound on the probability of failing to meet
explicit constraints may be specified or, in the second case, the
penalty on the distance to a target location averaged. Herein,
we consider a natural third alternative where the marginal end-
point probability densities for the state vector are explicitly
specified. This type of “soft conditioning” may be thought of
as a relaxed constraint with respect to the requirement that the
state vector belongs to a specified set. It leads to a problem
which is in a way similar, but also sharply different from
the classical LQG problem [1] as well as some of its more
recent variants such as the one with chance constraints, see,
e.g., [2], [3].

This problem is relevant in a wide spectrum of classical
as well as emerging control applications. First and foremost,
since it represents soft conditioning, it is of importance in
applications where a distribution rather than a set of values for
the state vector is a natural specification, e.g., in quality control,
industrial and manufacturing processes. Applications may also
be envisaged to control of aircrafts, UAVs, and autonomous
cars. It is also relevant in a host of other applications at the
forefront of modern technological developments such as in the
control at the molecular and even atomic scale, the shaping of
NMR pulse sequences, laser driven molecular reactions, quan-
tum metrology, atomic force microscopy (AFM), dynamic force
microscopy (DFM) and many others; see [4]–[9]. For example,
in surface topography using AFM, feedback control is used to
limit the fluctuations of the tip of the cantilever. Similarly, in
other applications, the distribution of particles in phase space is
shaped using a time-varying control potential, and the energy
profile of molecules and polymers is shaped using suitable
energy sources. Steering a thermodynamic system to a desired
steady state corresponding to a lower effective temperature
is referred to as “cooling.” Cooling via feedback control is
of great interest in both, microscopic as well as macroscopic
electro-mechanical systems. For instance, cooling to ultra-low
temperatures is indispensable to investigate decoherence—see
[10], [11] for a feedback cooling technique of a ton-scale
resonant-bar gravitational wave detector, and [12] for a survey
of cooling techniques for both meter-sized detectors as well
as nano-mechanical systems. For these diffusion-mediated de-
vices, which are often called Brownian motors since work can
be extracted from them [13], motor efficiency can be cast as
the optimal control problem of steering the distribution of a
diffusion process [14].

Interestingly, the special case of steering a Brownian diffu-
sion between an initial and a final distribution relates to a seem-
ingly disparate problem that was posed by Erwin Schrödinger
in 1931/1932 [15]. In his quest for a more classical formulation

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1170 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016
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Abstract—We address the problem of steering the state of a
linear stochastic system to a prescribed distribution over a finite
horizon with minimum energy, and the problem to maintain the
state at a stationary distribution over an infinite horizon with
minimum power. For both problems the control and Gaussian
noise channels are allowed to be distinct, thereby, placing the
results of this paper outside of the scope of previous work both in
probability and in control. The special case where the disturbance
and control enter through the same channels has been addressed
in the first part of this work that was presented as Part I. Herein,
we present sufficient conditions for optimality in terms of a system
of dynamically coupled Riccati equations in the finite horizon case
and in terms of algebraic conditions for the stationary case. We
then address the question of feasibility for both problems. For the
finite-horizon case, provided the system is controllable, we prove
that without any restriction on the directionality of the stochastic
disturbance it is always possible to steer the state to any arbitrary
Gaussian distribution over any specified finite time-interval. For
the stationary infinite horizon case, it is not always possible to
maintain the state at an arbitrary Gaussian distribution through
constant state-feedback. It is shown that covariances of admissible
stationary Gaussian distributions are characterized by a certain
Lyapunov-like equation and, in fact, they coincide with the class
of stationary state covariances that can be attained by a suitable
stationary colored noise as input. We finally address the question
of how to compute suitable controls numerically. We present an
alternative to solving the system of coupled Riccati equations, by
expressing the optimal controls in the form of solutions to (con-
vex) semi-definite programs for both cases. We conclude with an
example to steer the state covariance of the distribution of inertial
particles to an admissible stationary Gaussian distribution over
a finite interval, to be maintained at that stationary distribution
thereafter by constant-gain state-feedback control.

Index Terms—Covariance control, linear stochastic systems,
Schrödinger bridges, stationary distributions, stochastic optimal
control.

I. INTRODUCTION

CONSIDER a linear system

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, ∞) (1)
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with A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈ Rm, and
the problem to steer (1) from the origin to a given point x(T ) =
ξ ∈ Rn. This of course is possible for any arbitrary ξ ∈ Rn

iff the system is controllable, i.e., the rank of [B,AB, . . . ,
An−1B] is n, that is, when (A, B) is a controllable pair. In
this case it is well known that the steering can be effected in
a variety of ways, including “minimum-energy” control, over
any prespecified interval [0, T ]. On the other hand, the problem
to achieve and maintain a fixed value ξ for the state vector in a
stable manner is not always possible. For this to be the case for
a given ξ, using feedback and feedforward control

0 = (A − BK)ξ + Bu (2)

must have a solution (u, K) for a constant value for the input u
and a suitable value of K so that A − BK is Hurwitz (i.e., the
feedback system be asymptotically stable). It is easy to see that
this reduces simply to the requirement that ξ satisfies

0 = Aξ + Bv

for some v; if there is such a v, we can always choose a suitable
K so that A − BK is Hurwitz and then, from v and K, we can
compute the constant value u. Conversely, from u and K we
can obtain v = u − Kξ.

In the present paper, we discuss an analogous and quite
similar dichotomy between our ability to assign the state-
covariance of a linear stochastically driven system by steering
the system over an interval [0, T ], and our ability to assign
the state-covariance of the ensuing stationary state process
through constant state-feedback. It will be shown that the state-
covariance can be assigned at the end of an interval through
suitable feedback control if and only if the system is con-
trollable. On the other hand, a positive semidefinite matrix
is an admissible stationary state-covariance attained through
constant feedback if and only if it satisfies a certain Lyapunov-
like algebraic equation. Interestingly, the algebraic equation
that specifies which matrices are admissible stationary state-
covariances through constant feedback is the same equation
that characterizes stationary state-covariances attained through
colored stationary input noise in open loop.

Both of these problems, to steer and possibly maintain the
state statistics of a stochastically driven system, represent gen-
eralizations of the classical regulator problem which is at the
heart of many control applications and entails efficient and
accurate steering to a target location. Prime examples, that
brought the subject of control and estimation to prominence
since the sixties include soft moon-landing, docking, and the
guidance of space vehicles, aircraft navigation, robotics, and
the steering of quantum mechanical systems, to name a few
[1]–[4]. The paradigm that is being considered in this paper
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Abstract. We explore the role of a special class of optimization problems

involving controlled Liouville equations. We present some new results on the

controllability of the Liouville equation and discuss the optimal control of its
moments for some important special cases. The problems treated suggest a new

domain of applicability for optimal control, one which can include constraints
more appropriate for the synthesis of control systems for a large class of real

world systems.

1. Introduction

In this paper we argue that some of the important limitations standing in the
way of the wider use of optimal control can be circumvented by explicitly acknowl-
edging that in most situations the apparatus implementing the control policy will
judged on its ability to cope with a distribution of initial states, rather than a single
state. This makes it appropriate to represent the system dynamics in terms of its
Liouville equation and to formulate performance measures in that setting. That is,
we argue in favor of replacing the usual control model ẋ = f(x, u) by the first order
partial di↵erential equation
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and for the consideration of performance measures which include non trajectory
dependent terms such as the second and third terms on the right-hand side of
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Later on we give a number of examples to support our contention but, in brief,
we may say that by forcing the specification of a range of initial conditions this
formulation allows one to include some important types of performance measures
not expressible in standard deterministic optimal control theory. In specific cases
this allows the designer to express, in mathematical terms, issues related to the
role of feedback, robustness and cost of implementation. This approach has some
aspects in common with stochastic control but occupies a position of intermediate
complexity, lying between deterministic calculus of variations on finite dimensional
manifolds and, the usually much less tractable, control of finite dimensional di↵u-
sion processes.

In almost all applications of automatic control there is a trade o↵ between the
gains to be had from trajectory optimization and the cost of the apparatus required
to implement the optimal policy. A simpler apparatus that generates commands
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Chapter 2
Notes on the Control of the Liouville Equation

Roger Brockett

Abstract In these notes we motive the study of Liouville equations having
control terms using examples from problem areas as diverse as atomic physics
(NMR), biological motion control and minimum attention control. On one hand,
the Liouville model is interpreted as applying to multiple trials involving a single
system and on the other, as applying to the control of many identical copies
of a single system; e.g., control of a flock. We illustrate the important role the
Liouville formulation has in distinguishing between open loop and feedback control.
Mathematical results involving controllability and optimization are discussed along
with a theorem establishing the controllability of multiple moments associated with
linear models. The methods used succeed by relating the behavior of the solutions
of the Liouville equation to the behavior of the underlying ordinary differential
equation, the related stochastic differential equation, and the consideration of the
related moment equations.

2.1 Introduction

In these notes we describe a number of problems in automatic control related to the
Liouville equation and various approximations of it. Some of these problems can
be cast either in terms of designing a single feedback controller which effectively
controls a particular system over repeated trials corresponding to different initial
conditions or, alternatively, using a broadcast signal to simultaneously control many
copies of a particular system. Sometimes these different points of view lead to
problems that are identical from the mathematical point of view. In many cases a
certain continuum limit can be formulated, either by considering an infinity of trials
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Abstract—We consider the problem of steering a linear dy-
namical system with complete state observation from an initial
Gaussian distribution in state-space to a final one with minimum
energy control. The system is stochastically driven through the
control channels; an example for such a system is that of an inertial
particle experiencing random “white noise” forcing. We show that
a target probability distribution can always be achieved in finite
time. The optimal control is given in state-feedback form and is
computed explicitly by solving a pair of differential Lyapunov
equations that are nonlinearly coupled through their boundary
values. This result, given its attractive algorithmic nature, appears
to have several potential applications such as to quality control,
control of industrial processes, as well as to active control of
nanomechanical systems and molecular cooling. The problem to
steer a diffusion process between end-point marginals has a long
history (Schrödinger bridges) and the present case of steering a
linear stochastic system constitutes such a Schrödinger bridge
for possibly degenerate diffusions. Our results provide the first
implementable form of the optimal control for a general Gauss–
Markov process. Illustrative examples are provided for steering
inertial particles and for “cooling” a stochastic oscillator. A final
result establishes directly the property of Schrödinger bridges as
the most likely random evolution between given marginals to the
present context of linear stochastic systems. A second part to this
work, that is to appear as part II, addresses the general situation
where the stochastic excitation enters through channels that may
differ from those used to control.

Index Terms—Linear stochastic system, Schrödinger bridge,
stochastic control.

I. INTRODUCTION

THE most basic paradigm in optimal control deals with the
steering of a dynamical system between two end-points in

time, while minimizing a suitable cost functional—here, the ex-
pected quadratic integral of the control input. The specifications
for the marginal conditions are either explicit, requiring that the
value of the state vector belongs to a specified set, or implicit,
penalizing the distance of the state vector from a target location.
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In the presence of a stochastic disturbance, in both cases,
the end-point conditions may be further modified accordingly.
For instance, a bound on the probability of failing to meet
explicit constraints may be specified or, in the second case, the
penalty on the distance to a target location averaged. Herein,
we consider a natural third alternative where the marginal end-
point probability densities for the state vector are explicitly
specified. This type of “soft conditioning” may be thought of
as a relaxed constraint with respect to the requirement that the
state vector belongs to a specified set. It leads to a problem
which is in a way similar, but also sharply different from
the classical LQG problem [1] as well as some of its more
recent variants such as the one with chance constraints, see,
e.g., [2], [3].

This problem is relevant in a wide spectrum of classical
as well as emerging control applications. First and foremost,
since it represents soft conditioning, it is of importance in
applications where a distribution rather than a set of values for
the state vector is a natural specification, e.g., in quality control,
industrial and manufacturing processes. Applications may also
be envisaged to control of aircrafts, UAVs, and autonomous
cars. It is also relevant in a host of other applications at the
forefront of modern technological developments such as in the
control at the molecular and even atomic scale, the shaping of
NMR pulse sequences, laser driven molecular reactions, quan-
tum metrology, atomic force microscopy (AFM), dynamic force
microscopy (DFM) and many others; see [4]–[9]. For example,
in surface topography using AFM, feedback control is used to
limit the fluctuations of the tip of the cantilever. Similarly, in
other applications, the distribution of particles in phase space is
shaped using a time-varying control potential, and the energy
profile of molecules and polymers is shaped using suitable
energy sources. Steering a thermodynamic system to a desired
steady state corresponding to a lower effective temperature
is referred to as “cooling.” Cooling via feedback control is
of great interest in both, microscopic as well as macroscopic
electro-mechanical systems. For instance, cooling to ultra-low
temperatures is indispensable to investigate decoherence—see
[10], [11] for a feedback cooling technique of a ton-scale
resonant-bar gravitational wave detector, and [12] for a survey
of cooling techniques for both meter-sized detectors as well
as nano-mechanical systems. For these diffusion-mediated de-
vices, which are often called Brownian motors since work can
be extracted from them [13], motor efficiency can be cast as
the optimal control problem of steering the distribution of a
diffusion process [14].

Interestingly, the special case of steering a Brownian diffu-
sion between an initial and a final distribution relates to a seem-
ingly disparate problem that was posed by Erwin Schrödinger
in 1931/1932 [15]. In his quest for a more classical formulation
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Abstract—We address the problem of steering the state of a
linear stochastic system to a prescribed distribution over a finite
horizon with minimum energy, and the problem to maintain the
state at a stationary distribution over an infinite horizon with
minimum power. For both problems the control and Gaussian
noise channels are allowed to be distinct, thereby, placing the
results of this paper outside of the scope of previous work both in
probability and in control. The special case where the disturbance
and control enter through the same channels has been addressed
in the first part of this work that was presented as Part I. Herein,
we present sufficient conditions for optimality in terms of a system
of dynamically coupled Riccati equations in the finite horizon case
and in terms of algebraic conditions for the stationary case. We
then address the question of feasibility for both problems. For the
finite-horizon case, provided the system is controllable, we prove
that without any restriction on the directionality of the stochastic
disturbance it is always possible to steer the state to any arbitrary
Gaussian distribution over any specified finite time-interval. For
the stationary infinite horizon case, it is not always possible to
maintain the state at an arbitrary Gaussian distribution through
constant state-feedback. It is shown that covariances of admissible
stationary Gaussian distributions are characterized by a certain
Lyapunov-like equation and, in fact, they coincide with the class
of stationary state covariances that can be attained by a suitable
stationary colored noise as input. We finally address the question
of how to compute suitable controls numerically. We present an
alternative to solving the system of coupled Riccati equations, by
expressing the optimal controls in the form of solutions to (con-
vex) semi-definite programs for both cases. We conclude with an
example to steer the state covariance of the distribution of inertial
particles to an admissible stationary Gaussian distribution over
a finite interval, to be maintained at that stationary distribution
thereafter by constant-gain state-feedback control.

Index Terms—Covariance control, linear stochastic systems,
Schrödinger bridges, stationary distributions, stochastic optimal
control.

I. INTRODUCTION

CONSIDER a linear system

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, ∞) (1)
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with A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈ Rm, and
the problem to steer (1) from the origin to a given point x(T ) =
ξ ∈ Rn. This of course is possible for any arbitrary ξ ∈ Rn

iff the system is controllable, i.e., the rank of [B,AB, . . . ,
An−1B] is n, that is, when (A, B) is a controllable pair. In
this case it is well known that the steering can be effected in
a variety of ways, including “minimum-energy” control, over
any prespecified interval [0, T ]. On the other hand, the problem
to achieve and maintain a fixed value ξ for the state vector in a
stable manner is not always possible. For this to be the case for
a given ξ, using feedback and feedforward control

0 = (A − BK)ξ + Bu (2)

must have a solution (u, K) for a constant value for the input u
and a suitable value of K so that A − BK is Hurwitz (i.e., the
feedback system be asymptotically stable). It is easy to see that
this reduces simply to the requirement that ξ satisfies

0 = Aξ + Bv

for some v; if there is such a v, we can always choose a suitable
K so that A − BK is Hurwitz and then, from v and K, we can
compute the constant value u. Conversely, from u and K we
can obtain v = u − Kξ.

In the present paper, we discuss an analogous and quite
similar dichotomy between our ability to assign the state-
covariance of a linear stochastically driven system by steering
the system over an interval [0, T ], and our ability to assign
the state-covariance of the ensuing stationary state process
through constant state-feedback. It will be shown that the state-
covariance can be assigned at the end of an interval through
suitable feedback control if and only if the system is con-
trollable. On the other hand, a positive semidefinite matrix
is an admissible stationary state-covariance attained through
constant feedback if and only if it satisfies a certain Lyapunov-
like algebraic equation. Interestingly, the algebraic equation
that specifies which matrices are admissible stationary state-
covariances through constant feedback is the same equation
that characterizes stationary state-covariances attained through
colored stationary input noise in open loop.

Both of these problems, to steer and possibly maintain the
state statistics of a stochastically driven system, represent gen-
eralizations of the classical regulator problem which is at the
heart of many control applications and entails efficient and
accurate steering to a target location. Prime examples, that
brought the subject of control and estimation to prominence
since the sixties include soft moon-landing, docking, and the
guidance of space vehicles, aircraft navigation, robotics, and
the steering of quantum mechanical systems, to name a few
[1]–[4]. The paradigm that is being considered in this paper

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Density Regulator with Terminal Cost



LQG State Regulator

min
u∈U

φ (x1, xd) + Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]

dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) = x0 given, xd given, t1 fixed,

Typical terminal cost: MSE

φ (x1, xd) = Ex1

[
(x1− xd)>M(x1− xd)

]



LQG Density Regulator

min
u∈U

ϕ (ρ1, ρd) + Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]

dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) ∼ ρ0 given, xd ∼ ρd given, t1 fixed,

Proposed terminal cost: MMSE

ϕ (x1, xd) = inf
y∼ρ∈P2(ρ1,ρd)

Ey
[
(x1− xd)

>M(x1− xd)
]
,

where y := (x1, xd)>



Problem Statement: LQG Density Regulator

min
u∈U

ϕ(ρ1, ρd)

inf
y∼ρ∈P2(ρ1,ρd)

Ey
[
(x1− xd)

>M(x1− xd)
]

+ Ex

[∫ t1

0
(x>Qx + u>Ru) dt

]

dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),

x(0) ∼ ρ0 = N (µ0, S0) , xd ∼ ρd = N (µd, Sd) ,

t1 fixed, U = {u : u(x, t) = K(t)x + v(t)}



However, ϕ (N (µ1, S1) ,N (µd, Sd)) equals

(µ1− µd)
>M (µ1− µd) +

min
C∈Rn×n

tr ((S1 + Sd− 2C)M) s.t.
[

S1 C
C> Sd

]
� 0

m
max

C∈Rn×n
tr (CM) s.t. CS−1

d C> � 0

m

C∗ = S1S
1
2
d

(
S

1
2
d S1S

1
2
d

)− 1
2

S
1
2
d



However, ϕ (N (µ1, S1) ,N (µd, Sd)) equals

(µ1− µd)
>M (µ1− µd) +

min
C∈Rn×n

tr ((S1 + Sd− 2C)M) s.t.
[

S1 C
C> Sd

]
� 0

m
max

C∈Rn×n
tr (CM) s.t. CS−1

d C> � 0

m

C∗ = S1S
1
2
d

(
S

1
2
d S1S

1
2
d

)− 1
2

S
1
2
d



This gives

ϕ (N (µ1, S1) ,N (µd, Sd)) = (µ1− µd)
>M (µ1− µd)

+tr
(

MS1 + MSd− 2
[(√

SdMS1
√

Sd
) (√

SdS1
√

Sd
)− 1

2

])

Applying maximum principle:

Ko(t) = R−1B>P(t),

vo(t) = R−1B> (z(t)− P(t)µ(t))



∞ dim. TPBVP 2
(

n + n(n+1)
2

)
dim. TPBVP

(
µ̇(t)
ż(t)

)
=

(
A BR−1B>

Q −A>

)(
µ(t)
z(t)

)
,

Ṡ(t) = (A + BKo)S(t) + S(t)(A + BKo)> + FF>,

Ṗ(t) = −A>P(t)− P(t)A− P(t)BR−1B>P(t) +Q,

Boundary conditions:

µ(0) = µ0, z(t1) = M(µd− µ1),

S(0) = S0, P(t1) =
(
Sd # S−1

1 − In
)

M



Matrix Geometric Mean

The minimal geodesic γ∗ : [0, 1] 7→ S+
n

connecting γ(0) = Sd and γ(1) = S−1
1 ,

associated with the Riemannian metric
gA(Sd, S−1

1 ) = tr
(
A−1SdA−1S−1

1

)
, is

γ∗(t) = Sd #t S−1
1 = S

1
2
d

(
S−

1
2

d S−1
1 S−

1
2

d

)t

S
1
2
d

= S−1
1 #1−t Sd = S−

1
2

1

(
S

1
2
1 SdS

1
2
1

)1−t

S−
1
2

1

Geometric Mean:

γ∗
(

1
2

)
= Sd # 1

2
S−1

1 = S−1
1 # 1

2
Sd



Example

(
dx1

dx2

)
=

[
0 1
2 −3

] (
x1

x2

)
dt +

[
0
1

]
u dt +

[
0.01
0.01

]
dw

ρ0 = N
(
(1, 1)>, I2

)
, ρd = N

(
(0, 0)>, 0.1 I2

)
,

Q = 100 I2, R = 1, M = I2, t1 = 2



Controlled State Mean

t
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Controlled State Covariance

ρd = N (µd, Sd) ρ1 = N (µ1, S1)

x1

x2



Expected Optimal Control

t
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Summary

Density regulator problem with terminal cost

LQGDR with affine state feedback

Recovers LQG/LQR as special case

Many possible extensions:

– (conjecture) affine state feedback is optimal
– output feedback
– geometry of different terminal costs



Thank you


