Demand Response via Privacy Preserving Thermal Inertial Load Management by an LSE

Abhishek Halder

Department of Electrical and Computer Engineering Texas A&M University College Station, TX 77843

Joint work with X. Geng, F.A.C.C. Fontes, P.R. Kumar, and L. Xie

How smart is your smart thermostat

January 4, 2008 Who Will Control Your Thermostat? By Joseph Somsel

"We repeat, there is nothing wrong with your thermostat. You are about to participate in a great adventure. You are about to experience the awe and mystery which reaches from the inner mind to ... SACRAMENTO!" temperature

Day Ahead Price Desired power consumption High Low **Temperature trajectory** $\theta_a(t)$ $U_0 = s_0 + \Delta$ ON OFF 2Δ OFF $L_0 = s_0 - \Delta$ time

$\textbf{Deadband} \rightarrow \textbf{Liveband}$

Privacy preserving sensing of total power

Simulation for 500 homes + ERCOT DA price

How can the LSE price a contract

Summary

- 1. Privacy preserving aggregate sensing
- 2. Individual comfort guarantees
- 3. Contract $\cos x \propto QoS$
- 4. Mathematically optimal, no ad-hoc fix

Wishlist

- 1. Hardware implementation of thermostatic control
- 2. Pilot project to implement the architecture