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Main Idea: Solve
@⇢

@t
= L⇢, ⇢(x , 0) = ⇢0 as gradient flow in P2(Rn

)

Proximal Operator: ⇢k = proxW 2

h� (⇢k�1) := arg inf
⇢2P2(Rn)

⇢
1
2
W 2(⇢, ⇢k�1) + h �(⇢)

�

Optimal Transport Cost: W 2(⇢, ⇢k�1) := inf
⇡2⇧(⇢,⇢k�1)

Z

Rn⇥Rn
c(x , y)d⇡(x , y)

Free Energy Functional: �(⇢) :=

Z

Rn
 ⇢ dx + ��1

Z

Rn
⇢ log ⇢ dx
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Infinite dimensional variational recursion:

Proximal operator:

Optimal transport cost:

Free energy functional:
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Gradient Flow in Rn

dx
dt

= �r'(x), x(0) = x0

Recursion:

xk = xk�1 � hr'(xk)

= arg min
x2Rn

⇢
1

2
kx � xk�1k22 + h'(x)

�

=: proxk·k2

h' (xk�1)

Convergence:

xk ! x(t = kh) as h # 0

Gradient Flow in P2(Rn
)

@⇢

@t
= �rW

�(⇢), ⇢(x , 0) = ⇢0

Recursion:

⇢k = ⇢(·, t = kh)

= arg min
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h�(⇢)

�

=: proxW 2

h� (⇢k�1)

Convergence:

⇢k ! ⇢(·, t = kh) as h # 0
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D

Geometric Meaning of Gradient Flow



Algorithm: Gradient Ascent on the Dual SpaceAlgorithm: Gradient Ascent on the Dual Space
Our Contribution: Algorithm

Uncertainty propagation via point clouds

No spatial discretization or function approximation
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@⇢

@t
= r · (r ⇢) + ��1

�⇢

m Proximal Recursion

⇢k = ⇢(x , t = kh) = arg inf
⇢2P2(Rn)

⇢
1

2
W

2
(⇢, ⇢k�1) + h �(⇢)

�

+ Discrete Primal Formulation

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + h h k�1 + ��1

log%,%i
�

+ Entropic Regularization

%k = arg min
%

⇢
min

M2⇧(%k�1,%)

1

2
hCk ,Mi + ✏H(M) + h h k�1 + ��1

log%,%i
�

m Dualization

�opt
0

,�opt
1

= arg max
�0,�1�0

⇢
h�0,%k�1i � F

?
(��1)

� ✏

h

✓
exp(�>

0
h/✏) exp(�Ck/2✏) exp(�1h/✏)

◆�
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Recursion on the ConeFixed Point Recursion

Theorem: Consider the recursion on the cone Rn
�0

⇥ Rn
�0

y � (�kz) = %k�1, z �
⇣
�k

>y
⌘
= ⇠k�1 � z� �✏

h ,

Then the solution (y⇤, z⇤
) gives the proximal update %k = z⇤ � (�k

>y⇤
)
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Algorithmic Setup

D2. Then, the idea is to design the metric d(·, ·) and the
functional �(·) in (3) such that %k(x) ! ⇢(x, t = kh) as
h # 0, i.e., in the small time-step limit, the solution of the
variational recursion (3) converges (in strong L

1 sense) to
that of (1). The main result in [17] was to show that for FPK
operators of the form (2) with f being a gradient vector field
and g being a scalar multiple of identity matrix, the distance
d(·, ·) can be taken as the Wasserstein-2 metric with �(·) as
the free energy functional. We will make these ideas precise
in Section II and III. The resulting variational recursion (3)
has since been known as the Jordan-Kinderlehrer-Otto (JKO)
scheme [18], and we will refer the FPK operator with such
assumptions on f and g to be in “JKO canonical form”.
Similar gradient descent schemes have been derived for many
other PDEs; see e.g., [19] for a recent survey.

To motivate gradient descent in infinite dimensional
spaces, we appeal to a more familiar setting, i.e., gradient
descent in Rn associated with the flow

dx

dt
= �r' (x) x(0) = x0, (4)

where x,x0 2 Rn and ' : Rn ! R�0, and is continuously
differentiable. The Euler discretization for (4) is given by

xk � xk�1 = �hr'(xk�1), (5)

which can be rewritten as a variational recursion

xk = arg min
x

1

2
k x � xk�1 k2 +h '(x) + o(h). (6)

In the optimization literature, the mapping xk�1 7! xk,
given by

proxk·k
h'(xk�1) := arg min

x
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FPK PDE via proximal recursion of the form (3) without
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Fig. 1. The resulting recursion is proved to be contractive and
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Proximal Prediction: Satellite in Geocentric OrbitProximal Prediction: Satellite in Geocentric OrbitMixed Conservative-Dissipative Drift
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Network Reduced Power System Model



Transform to isotropic degenerate diffusion



Propagate the Pushforward



Proximal Update



Proximal Prediction: Power System with n = 2
Projection of the joint PDF on 



Proximal Prediction: Power System with n = 20
Randomly generated parameters using interval data from:
Dorfler, F., and Bullo, F., Synchronization and transient stability in power networks and nonuniform 
Kuramoto oscillators, SIAM J. Control and Optimization, Vol. 50, No. 3, pp. 1616–1642, 2012.



Proximal Prediction: Power System with n = 20
Randomly generated parameters using interval data from:
Dorfler, F., and Bullo, F., Synchronization and transient stability in power networks and nonuniform 
Kuramoto oscillators, SIAM J. Control and Optimization, Vol. 50, No. 3, pp. 1616–1642, 2012.



Summary

Fast proximal recursions for PDF propagation in power systems

Ongoing

Large scale implementation: ~1000 generators in ~seconds

Control of joint PDFs via state feedback
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Projection of the joint PDF on 


