Unmanned Aerial System Traffic Management

Challenges and Design Ideas

Abhishek Halder

Department of Applied Mathematics and Statistics University of California, Santa Cruz

Joint work with P.R. Kumar's group at Texas A&M

Today's Manned Air Traffic Management

- Managed by humans
- Voice based system

- Separation management for each aircraft
- For controlled airspace (A,B,C,D,E)

Vision for UAS Traffic Management (UTM)

Class G airspace extends up to 1200 ft AGL

500 ft AGL

Weight no more than 55 lbs

200 ft AGL

Requires: Automated V2V separation management Yield manned traffic Avoid obstacles (trees, buildings, towers etc.)

Enabler for Many Potential Services

- Package delivery
- News coverage
- Precision agriculture
- Firefighting
- Law enforcement
- Infrastructure inspection

Technical Challenges

Dynamic Geofencing

Control over LTE

Image credit: NASA Ames Research Center

Wind Uncertainty

Provable Safety

Protocols \equiv Laws of the Sky

Offline Protocol

– How FAA approves a flight path request?

Motion Protocol

- What does an individual drone do in real time?

Communication Protocol

- What and how should a drone in flight talk?

Database Protocol

– Which other drones to talk with and when?

Offline Protocol

How FAA approves a flight path request?

Motion Protocol

What does an individual drone do in real time?

Input: Approved Flight Path

Reach Set Evolution due to Wind Uncertainty

Discrete Decision Making Instances

4D Flight Tubes $\mathcal{F}_{[t_j,t_{j+1})}$

4D Flight + Landing Tubes $\{\mathcal{F}_{[t_j,t_{j+1})}, \mathcal{L}_{[t_{j+1},t_{j+2})}\}$

Motion Protocol: $t = t_0$

IF: Have all + ACKs for $\{\mathcal{F}_{[t_0,t_1)}, \mathcal{L}_{[t_1,t_2)}\}$ **AND** $D \in \mathcal{R}_{\pi_F}(\{O\}, t_f - t_0)$

THEN: Take-off **AND** broadcast req. for $\{\mathcal{F}_{[t_1,t_2)}, \mathcal{L}_{[t_2,t_3)}\}$

Motion Protocol: $t \in [t_0, t_1)$

Listening for \pm ACKs, $\boldsymbol{x}(t) \in \mathcal{F}_{[t_0,t_1)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND $D \in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\notin \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)}, \mathcal{L}_{[t_3,t_4)}\}$

ELSE: Abort mission via $\mathcal{L}_{[t_1, t_2)}$

Input-Output for Motion Protocol

Algorithms for Motion Protocol

Compute minimum bit-length parameterizations: ellipsoids

Proposed Architecture: Performance

Number of offline approvals

Thank You