Analysis and Control of Large Scale Aerospace Systems

from Planetary Landing to Drone Traffic Management

Abhishek Halder

Department of Mechanical and Aerospace Engineering University of California, Irvine Irvine, CA 92697-3975

Motivation: Drone Traffic Management

Controlling A Drone Controlling Swarm of Drones Process Controller

Motivation: Drone Traffic Management

Large number of agents ~> Population density

Motivation: Mars Entry-Descent-Landing

Motivation: Mars Entry-Descent-Landing

Large number of uncertain scenarios ~> Probability density

Motivation: Mars Entry-Descent-Landing

Supersonic parachute

Gale Crater (4.49S, 137.42E)

What to Analyze and Control

Outlook

Continuum of systems

Finitely many systems

One system

Outline of Today's Talk

Part I: An Application

Propagating Density in Planetary EDL

Part II: A Theory Controlling Density

Part III: Ongoing and Future Research Unmanned Aerial Systems Traffic Management

Part I. An Application

Propagating Density in Planetary EDL

Forecasting, Estimation, Validation, Verification

Joint work with R. Bhattacharya (Texas A&M), J. Balaram (JPL)

State-of-the-art

Nonlinear Dynamics with Monte Carlo on Samples

Linear Dynamics with Gaussian Uncertainty

State-of-the-art

Nonlinear Dynamics with Monte Carlo on Samples

Linear Dynamics with Gaussian Uncertainty

too expensive for EDL simulation

too ideal for EDL simulation

How Bad is Gaussian Fit

Source: Golombek et. al., J. Geophys. Research. 2003

Propagating Joint Density Function

Trajectory dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}), \quad \mathbf{x} \in \mathbb{R}^{n_s}, \quad \mathbf{p} \in \mathbb{R}^{n_p}; \quad \mathbf{x}(0), \mathbf{p} \text{ random}$$
$$\dot{\mathbf{x}}_e(t) = \mathbf{f}_e(\mathbf{x}_e(t)), \quad \mathbf{x}_e := \begin{bmatrix} \mathbf{x} \\ \mathbf{p} \end{bmatrix} \in \mathbb{R}^{n_s + n_p}, \quad \mathbf{x}_e(0) \sim \rho_0(\mathbf{x}_e)$$

Density dynamics

Liouville PDE for joint density $\rho(\mathbf{x}_{e}(t), t)$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{f}) = 0$$

Method of characteristics (MOC)

$$\dot{\mathbf{x}}_{e}(t) = \mathbf{f}_{e}\left(\mathbf{x}_{e}(t)\right), \quad \dot{\rho}(t) = -\rho\nabla\cdot\mathbf{f}, \quad \begin{bmatrix}\mathbf{x}_{e}(0)\\\rho(0)\end{bmatrix} = \begin{bmatrix}\mathbf{x}_{e}(0)\\\rho_{0}(\mathbf{x}_{e}(0))\end{bmatrix}$$

MC simulation	Liouville MOC
Offline post-processing	Online
Histogram approximation	Exact arithmetic
Grid based	Meshless
n_s ODEs per sample	$n_s + 1$ ODEs per sample

Application to Mars EDL

Landing Footprint Uncertainty

Application to Mars EDL Chute Deployment Uncertainty

A.H., R. Bhattacharya, Dispersion Analysis in Hypersonic Flight During Planetary Entry Using Stochastic Liouville Equation, Journal of Guidance, Control, and Dynamics, 2011.

A.H., R. Bhattacharya, Beyond Monte Carlo: A Computational Framework for Uncertainty Propagation in Planetary Entry, Descent and Landing, AIAA GNC, 2010.

Extension for Process Noise

P. Dutta, A.H., R. Bhattacharya, Uncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Loève Expansion, MSC, 2012.

Application to Nonlinear Filtering

P. Dutta, A.H., R. Bhattacharya, Nonlinear Estimation with Perron-Frobenius Operator and Karhunen-Loève Expansion, IEEE Transactions on Aerospace and Electronic Systems, 2015.

P. Dutta, A.H., R. Bhattacharya, Nonlinear Filtering with Transfer Operator, ACC, 2013.

Model and Controller V&V

K. Lee, A.H., R. Bhattacharya, Performance and Robustness Analysis of Stochastic Jump Linear Systems using Wasserstein Metric, *Automatica*, 2015.

A.H., R. Bhattacharya, Probabilistic Model Validation for Uncertain Nonlinear Systems, Automatica, 2014.

A.H., L. Lee, R. Bhattacharya, A Dynamical System Pair with Identical First Two Moments But Different Probability Densities, *CDC*, 2014.

K. Lee, A.H., R. Bhattacharya, Probabilistic Robustness Analysis of Stochastic Jump Linear Systems, ACC, 2014.

A.H., R. Bhattacharya, Frequency Domain Model Validation in Wasserstein Metric , ACC, 2013.

A.H., R. Bhattacharya, Further Results on Probabilistic Model Validation in Wasserstein Metric, CDC, 2012.

A.H., R. Bhattacharya, Model Validation: A Probabilistic Formulation, CDC, 2011.

F-16 Flight Controller Verification

 u_{trim} x_0 x_{trim} + u F-16 x + Δu LQR Δx

F-16 Flight Controller Verification

A.H., K. Lee, R. Bhattacharya, Probabilistic Robustness Analysis of F-16 Controller Performance: An Optimal Transport Approach, ACC, 2013.

Model Refinement

A.H., R. Bhattacharya, Geodesic Density Tracking with Applications to Data Driven Modeling, ACC, 2014.

Part II. A Theory

Controlling Density

Finite Horizon LQG Density Regulator

Joint work with E.D.B. Wendel (Draper Laboratory)

How to Go from One Density to Another

or Close to Another

LQG State Regulator

$$\min_{u \in \mathcal{U}} \phi(x_1, x_d) + \mathbb{E}_x \left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t \right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

 $x(0) = x_0$ given, x_d given, t_1 fixed,

Typical terminal cost: MSE

$$\phi(x_1, x_d) = \mathbb{E}_{x_1}\left[(x_1 - x_d)^\top M(x_1 - x_d)\right]$$

LQG Density Regulator

$$\min_{u \in \mathcal{U}} \varphi\left(\rho_1, \rho_d\right) + \mathbb{E}_x\left[\int_0^{t_1} (x^\top Q x + u^\top R u) \, \mathrm{d}t\right]$$

$$dx(t) = Ax(t) dt + Bu(t) dt + F dw(t),$$

$$x(0) \sim
ho_0$$
 given, $x_d \sim
ho_d$ given, t_1 fixed,

Proposed terminal cost: MMSE

$$\varphi(x_1, x_d) = \inf_{y \sim \rho \in \mathcal{P}_2(\rho_1, \rho_d)} \mathbb{E}_y \left[(x_1 - x_d)^\top M(x_1 - x_d) \right],$$

where $y := (x_1, x_d)^\top$

Formulation: LQG Density Regulator $\varphi(\rho_1,\rho_d)$ $\min_{u \in \mathcal{U}} \inf_{y \sim \rho \in \mathcal{P}_2(\rho_1, \rho_d)} \mathbb{E}_y \left[(x_1 - x_d)^\top M(x_1 - x_d) \right]$ $+\mathbb{E}_{x}\left[\int_{0}^{t_{1}}(x^{\top}Qx + u^{\top}Ru) dt\right]$ dx(t) = Ax(t) dt + Bu(t) dt + F dw(t), $x(0) \sim ho_0 = \mathcal{N}\left(\mu_0, S_0 ight), \ \ x_d \sim ho_d = \mathcal{N}\left(\mu_d, S_d ight),$ t_1 fixed, $\mathcal{U} = \{ u : u(x,t) = K(t)x + v(t) \}$

 $\infty \text{ dim. TPBVP} \rightsquigarrow (n^2 + 3n) \text{ dim. TPBVP} \\ \begin{pmatrix} \dot{\mu}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A & BR^{-1}B^{\top} \\ Q & -A^{\top} \end{pmatrix} \begin{pmatrix} \mu(t) \\ z(t) \end{pmatrix},$

 $\dot{S}(t) = (A + BK^{o})S(t) + S(t)(A + BK^{o})^{\top} + FF^{\top},$

 $\dot{P}(t) = -A^{\top}P(t) - P(t)A - P(t)BR^{-1}B^{\top}P(t) + Q,$

Boundary conditions:

$$\mu(0) = \mu_0, z(t_1) = M(\mu_d - \mu_1),$$

$$S(0) = S_0, P(t_1) = \left(S_d^{\frac{1}{2}} \left(S_d^{-\frac{1}{2}} S_1^{-1} S_d^{-\frac{1}{2}}\right)^{\frac{1}{2}} S_d^{\frac{1}{2}} - I_n\right) M$$

Controlled State Covariance

Expected Optimal Control

A.H., E.D.B. Wendel, Finite Horizon Linear Quadratic Gaussian Density Regulator with Wasserstein Terminal Cost, ACC, 2016.

Part III. Ongoing and Future Research

UTM

Unmanned Aerial Systems Traffic Management

Vision for UAS Traffic Management (UTM)

Class G airspace extends up to 1200 ft AGL

500 ft AGL

Weight no more than 55 lbs

200 ft AGL

Requires: Automated V2V separation management Yield manned traffic Avoid obstacles (buildings, towers etc.)

Technical Challenges

Dynamic Geofencing

Control over LTE

Image credit: NASA Ames Research Center

Wind Uncertainty

Provable Safety

Protocols \equiv Laws of the Sky

Offline Protocol

– How FAA approves a flight path request?

Motion Protocol

- What does an individual drone do in real time?

Communication Protocol

- What and how should a drone in flight talk?

Database Protocol

– Which other drones to talk with and when?

Offline Protocol

How FAA approves a flight path request?

Motion Protocol

What does an individual drone do in real time?

Input: Approved Flight Path

Reach Set Evolution due to Wind Uncertainty

Discrete Decision Making Instances

4D Flight Tubes $\mathcal{F}_{[t_j,t_{j+1})}$

4D Flight + Landing Tubes $\{\mathcal{F}_{[t_j,t_{j+1})}, \mathcal{L}_{[t_{j+1},t_{j+2})}\}$

Motion Protocol: $t = t_0$

IF: Have all + ACKs for $\{\mathcal{F}_{[t_0,t_1)}, \mathcal{L}_{[t_1,t_2)}\}$ **AND** $D \in \mathcal{R}_{\pi_F}(\{O\}, t_f - t_0)$

THEN: Take-off **AND** broadcast req. for $\{\mathcal{F}_{[t_1,t_2)}, \mathcal{L}_{[t_2,t_3)}\}$

Motion Protocol: $t \in [t_0, t_1)$

Listening for \pm ACKs, $\boldsymbol{x}(t) \in \mathcal{F}_{[t_0,t_1)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND $D \in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\in \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

ELSE: Abort mission via $\mathcal{L}_{[t_1,t_2)}$

Motion Protocol: $t = t_1$ IF: All + ACKs AND D $\notin \mathcal{R}_{\pi_F}(\{\boldsymbol{x}(t_1)\}, t_f - t_1)$

THEN: Continue in $\mathcal{F}_{[t_1,t_2)}$ **AND** broadcast req. for $\{\mathcal{F}_{[t_2,t_3)}, \mathcal{L}_{[t_3,t_4)}\}$

ELSE: Abort mission via $\mathcal{L}_{[t_1, t_2)}$

Algorithms for Motion Protocol

Compute minimum volume outer ellipsoids: SDP

Proposed Architecture: Performance

Number of offline approvals

Thank You

Backup Slides for Part I

Backup Slides for Part II

$$\varphi \left(\mathcal{N} \left(\mu_1, S_1 \right), \mathcal{N} \left(\mu_d, S_d \right) \right)$$
 equals
 $\left(\mu_1 - \mu_d \right)^\top M \left(\mu_1 - \mu_d \right) +$

$$\min_{C \in \mathbb{R}^{n \times n}} \operatorname{tr} \left((S_1 + S_d - 2C)M \right) \text{ s.t. } \begin{bmatrix} S_1 & C \\ C^\top & S_d \end{bmatrix} \succeq 0$$

This gives

$$\varphi\left(\mathcal{N}\left(\mu_{1}, S_{1}\right), \mathcal{N}\left(\mu_{d}, S_{d}\right)\right) = \left(\mu_{1} - \mu_{d}\right)^{\top} M\left(\mu_{1} - \mu_{d}\right)$$
$$+ \operatorname{tr}\left(MS_{1} + MS_{d} - 2\left[\left(\sqrt{S_{d}}MS_{1}\sqrt{S_{d}}\right)\left(\sqrt{S_{d}}S_{1}\sqrt{S_{d}}\right)^{-\frac{1}{2}}\right]\right)$$

Applying maximum principle:

$$K^o(t) = R^{-1}B^{ op}P(t),$$

 $v^o(t) = R^{-1}B^{ op}(z(t) - P(t)\mu(t)),$

Matrix Geometric Mean

The minimal geodesic $\gamma^* : [0,1] \mapsto \mathbf{S}_n^+$ connecting $\gamma(0) = S_d$ and $\gamma(1) = S_1^{-1}$, associated with the Riemannian metric $g_A(S_d, S_1^{-1}) = \operatorname{tr} (A^{-1}S_d A^{-1}S_1^{-1})$, is $\gamma^*(t) = S_d \, \#_t \, S_1^{-1} = S_d^{\frac{1}{2}} \left(S_d^{-\frac{1}{2}} S_1^{-1} S_d^{-\frac{1}{2}} \right)^t S_d^{\frac{1}{2}}$ $= S_1^{-1} \#_{1-t} S_d = S_1^{-\frac{1}{2}} \left(S_1^{\frac{1}{2}} S_d S_1^{\frac{1}{2}} \right)^{1-t} S_1^{-\frac{1}{2}}$

Geometric Mean: $\gamma^*\left(\frac{1}{2}\right) = S_d \#_{\frac{1}{2}} S_1^{-1} = S_1^{-1} \#_{\frac{1}{2}} S_d$

Example

$$\begin{pmatrix} dx_1 \\ dx_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} dt + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u dt + \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix} dw$$

$$ho_0 = \mathcal{N}\left((1,1)^ op, I_2
ight), \hspace{1em}
ho_d = \mathcal{N}\left((0,0)^ op, 0.1\, I_2
ight),$$

 $Q = 100 I_2, \quad R = 1, \quad M = I_2, \quad t_1 = 2$

Backup Slides for Part III

Input-Output for Motion Protocol

