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V&V computation for safety-critical CPS
- compute provably tight outer-approximation of the

forward reach sets for closed-loop dynamics

- "outer" ⇝ "safe"

- "tight" ⇝ "least conservative" (e.g., min volume)

- natural ways to account set-valued uncertainties

Understanding the Geometry of Integrator 
Reach Sets for Robotics Applications

Shadi Haddad, Abhishek Halder

 dimensional reach set volume at time  for :d t |u | ≤ μ

Diameter of the reach set:

Reach set:

Where can the robot be at a future time subject to 
the dynamics and current knowledge of uncertainties 

Credit: Duindam et al. 2009

Credit: Patil and Alterovitz, 2010



Computationally demanding in general ...

- Nonparametric: level set toolbox [Mitchell]

- Parametric: ellipsoidal toolbox
[Kurzhanskiy-Varaiya], CORA [Althoff], many others

- Semiparametric: data-driven reachability, growing
literature in last 3-5 years

Safety-critical CPS platforms typically have scarce
computational resources
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Natural idea: anytime over-approximation

- provable over-approximation

- monotonically adapt tightness w.r.t.
computational time available

This talk: Anytime ellipsoidal over-approximation
for linear systems + set-valued uncertainties
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Ellipsoids

(q, Q) ∈ Rd × Sd
++ parameterization:

E(q, Q) :=
!

y ∈ Rd | (y − q)⊤Q−1(y − q) ≤ 1
"

(A0, b0, c0) ∈ Sd
++ × Rd × R parameterization:

E (A0, b0, c0) :=
#

y ∈ Rd | y⊤A0y + 2y⊤b0 + c0 ≤ 1
$



Why ellipsoids

- fixed parameterization complexity:
need d(d + 3)/2 reals in d dimensions

- natural for modeling:
weighted norm-bounded uncertainties ∼
time-varying ellipsoids

- mathematically nice:
minimum volume outer ellipsoid (MVOE)
a.k.a. Löwner-John ellipsoid ELJ of any
compact set in unique



Models
Linear system:

ẋ = A(t)x + B(t)u + G(t)w

Uncertainties:

x(0) ∈ X0 := E (x0, X0)

u ∈ U (t) := E (uc(t), U(t))

w ∈ W(t) := E (wc(t), W(t))

Forward reach set:
R (X0, t) := {x(t) ∈ Rn | ẋ = A(t)x + B(t)u + G(t)w

x(0) ∈ X0, u ∈ U (t), w ∈ W(t)}



Ellipsoidal over-approximation of R (X0, t)

- Due to Kurzhanski and Varaiya

- Construct a family {E (xc(t), Xi(t))}N
i=1

parameterized by unit vectors
ℓ10, . . . , ℓN0 ∈ Rn such that

R (X0, t) ⊆ %RN (X0, t) :=
!N

i=1 E (xc(t), Xi(t))

for any finite N = 1, 2, . . .

- Also,
!∞

i=1 E (xc(t), Xi(t)) = R (X0, t)



Constructing !RN

- Let ℓi(t) := exp
&
−(A(t))⊤t

'
ℓi0

and πi(t) :=

(
ℓ⊤i (t)B(t)U(t)B⊤(t)ℓi(t)

ℓ⊤i (t)Xi(t)ℓi(t)

)1/2

- Find orthogonal Si(t) such that

Si(t)
X1/2

i (t)ℓi(t)***X1/2
i (t)ℓi(t)

***
2

=
G(t)W(t)G⊤(t)ℓi(t)***G(t)W(t)G⊤(t)ℓi(t)

***
2



Construct E (xc(t), Xi(t)) by solving

Center vector initial value problem:

ẋc(t)=A(t)xc(t)+B(t)uc(t)+G(t)wc(t), xc(0) = x0

Shape matrix initial value problem:

Ẋi(t) = A(t)Xi(t) + Xi(t)(A(t))⊤ + πi(t)Xi(t)
+ 1

πi(t)
B(t)U(t)B⊤(t)− X1/2

i (t)Si(t)G(t)W(t)G⊤(t)
−G(t)W(t)G⊤(t)S⊤

i (t)X
1/2
i (t), Xi(0) = X0



Wanted: MVOE E (xc(t), X(t)) ⊇ !RN

arg min
X(t)≻0

vol (E (xc(t), X(t)))

s.t.
!N

i=1 E (xc(t), Xi(t)) ⊆ E (xc(t), X(t))

- convex semi-infinite program

- verifying the constraint for N + 1 given
ellipsoids is NP complete



Relaxation based on S procedure

minimize
!A,!b,τ1,...,τN

log det +A−1

s.t. +A ≻ 0, τ1, . . . , τN ≥ 0,,

-.

+A +b 0

b̃⊤ −1 +b
⊤

0 +b −+A

/

01− ∑N
i=1 τi

,

-.
Ai bi 0
b⊤

i ci 0
0 0 0

/

01 ≼ 0

return E
2
−+A−1

opt
+bopt, +A

−1
opt

3

in (q, Q) parameterization



Speeding up computation

- Propagation of ellipsoids ⇝ solve N + 1 initial
value problems in parallel

- Projection:

proj

!
ELJ

!
N!

i=1

E (xc(t), Xi(t))

""
= ELJ

!
proj

!
N!

i=1

E (xc(t), Xi(t))

""

⊆ ELJ

!
N!

i=1

proj (E (xc(t), Xi(t)))

"
⊆ minimizer of maxdet problem

w. input proj(·) of E (xc(t), Xi(t))



Anytime computation

Parallel computation on enterprise cloud
Supervisory algorithm

Propagate
Parallel computation on enterprise cloud

Project

Parallel computation on enterprise cloud

Solve max-det problem (12)

Parallel computation on enterprise cloud



Anytime computation

- At t = k∆t, we have tavailable < ∆t time
available to compute R (X0, t = (k + 1)∆t)

- tavailable depends on processor availability

- tpropagation + topt = f (N), estimate %f from
data and find maximal real root of
tavailable = %f (%N). Then Nmax = ⌊%N⌋

- May also learn Nmax online



Numerical case study: controlled quadrotor

- n = 12 states, m = 4 inputs, p = 3
unmeasured disturbances

Rotor Numbering Convention

21

34

Left

RightBack

Front



Numerical case study: controlled quadrotor

- closed-loop LTV dynamics with finite
horizon LQ tracker + estimation error

- ẋ = Acl(t)x + Bclη+ Gw,
x(0) ∈ E (x0, X0),
η ∈ E

&
v(t), P(t)E(t)P⊤(t)

'
,

w ∈ E (wc(t), W(t))



Numerical case study: controlled quadrotor

- ellipsoidal over-approximation in (x, y, z)
position coordinates: 10 snapshots in
t ∈ [0, 1] with Nmax = 10



Summary of findings

– Anytime implementation for ellipsoidal
over-approximation

– Computational time dominated by ellipsoidal
propagation

– Possible directions: anytime algorithms for other
parametric/nonparametric/semiparametric
algorithms, online learning for supervisor

Thank You
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