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State Estimation for Continuous Time
Markov Chain

- X(t) ~ Markov (Q) on some finite state space
Q=A{ay,...,an}.

- The m x m transition rate matrix Q satisfies Q;; > 0
fori 7 j, Qi = — L Qij < 0.

- Assume: the Markov chain is time homogeneous, i.e.,
the transition probability matrix is exp (tQ), Vt > 0.

- Given initial occupation probability row vector
7o € A1 (standard simplex in R™)



The Nonlinear Estimation Problem

Dynamics:

state model: X(t) ~ Markov (Q), o€ A™ !

observation model: dZ(t) = h (X(t)) dt + oy (t) dt

- h(-) is deterministic injective function of state.
- oy(t) € C!, bounded away from zero for all ¢ > 0.

- Standard Wiener process V(t) is indep. of X(f).



The Nonlinear Estimation Problem

Dynamics:

state model: X(t) ~ Markov (Q), o€ A™ !

observation model: dZ(t) = h (X(t)) dt + oy (t) dt

- h(-) is deterministic injective function of state.
- oy(t) € C!, bounded away from zero for all ¢ > 0.

- Standard Wiener process V(t) is indep. of X(f).

Compute posterior probabilities (MMSE estimates):

T (t) = P{X(t) =a; | Z(s),0<s < t},i=1,...,m.
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Exact Solution: Wonham Filter (1964-65)
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SOME APPLICATIONS OF STOCHASTIC DIFFERENTIAL
EQUATIONS TO OPTIMAL NONLINEAR FILTERING*

W. M. WONHAM{

Posterior prob. 7w (t) := {m; (t),..., 7} (t)} solves:

drt (1) = 7 ()Qt + o () (H - E(t)z) x
(dZ(t) . E(t)dt)

with initial condition 7t (0) = 7.

H := diag (h(a1),...,h(ay)), h(t):= Y h(a)rf ().



The Present Paper

[ New variational interpretation of the flow 7t (t)




The Present Paper

[ New variational interpretation of the flow 7t (t)

Main idea: stochastic flow ~ proximal recursion
Construct gradient descent of a stochastic functional ®:

.1
Pe(A) = argmlf Edz (P P_1) +AP(p), po=m0, k €N
peEA™—

v

~\~

proxie, (Pe_1)

A is the step-size
d(-,-) is a distance functional between prob. vectors
®(-) depends on the generator of the flow 7t (t)



Stochastic Flow ~ Proximal Recursion

1
pi(A) = arginf 5 (ppyy) + A®(p), po=mr0, k € N
peEA™—

-~

proxiy (Pi—1)

Design (d, ®) such that p,(A) — m(t =kA)as A | O as.

[ This is gradient descent of ® w.r.t. distance d ]




Familiar in IR": Grad Descent «~+ Prox
X — Xp—1 — )\V(P(Xk_l)
X = proxﬂ\;))|2 (Xk—1)

= argmin {4]x — x1[3 + Ap(x)}

xeR”
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This is nice because
- argmin of ¢ = fixed point of prox. operator

- prox. is smooth even when ¢ is not

reveals metric structure of gradient descent




Back to the Estimation Problem

Idea: posterior flow ~ composition of prox. operators

(A N r (A (A
P oty () 2 gy ()2

1 step delay

(pk_ ,pl‘f) = (approx. prior, approx. posterior)

solves Wonham SDE
I

Design (d*, ®*) s.t. p (A) = " (t =kA) as A|Oas.




Main Results

Proximal recursion for the posterior

Theorem
Lettr_1:=(k—1A, k€N, and Zy_1 := Z(t = t;_1).

Also, let Yy_q := (Zk = Zk—l)//\-

Kullback-Leibler
divergence

|
Then, 2(d+) =Dk (p | Py ) sz 10g< p(i) )

pi (i)

and ©* (p) = 3 —L—E, [(YH - h)z} .




Main Results

Proximal recursion for the prior

Theorem .
unique stationary prob.  detailed balance:

Tt € interior (Am’]) ”w(i)Qij: 7700(]')jS
I I
Assume X(t) is irreducible and reversible

Def. inner product (p, q) r., := Zl n Sell) ), p,q € AL

Then, d~ = [|p — p;_, || o, and @~ (p) = —%<pQ,p>nw

Other inner products work too: (p, q) »..:= Y;p(i)q(i)

If not reversible, then p, (A) = p;” [ (A)(I—AQ) "1 +0(A)

(i)




Quick Recap

P (A) = proxd (p;l) [prior update]
. 1 A
=arginf Slp—pyll7, — 5 (PQP)ne
pGAm’l
pi(A) = prox‘ g, (ry) [posterior update]
A

= arginf Dy (P H pk_) +

peAn-1 2 ((Tv(tkl))2IEp[(Yk1 - h)z]



Numerical Results
Example 1:

X(t) reversible on Q = {—1,0,1}, h(X(¢)) = 0.01X(¢),

-1 1/2 1/2
rate matrix Q= |2 -2 0 |,oy =0.01.
3 0 -3

Example 2:
X(t) non-reversible on Q = {—1,0,1}, h(X(t)) = 0.01X(¢),
-5 3 2

ratematrix Q= | 4 —-10 6 |, oy = 0.01.
3 4 -7



Numerical Results: Example 1
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Numerical Results: Example 1 (contd.)
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Numerical Results: Example 2
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Numerical Results: Example 2 (contd.)
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Summary

— General idea: nonlinear filtering as gradient descent

— This work: recovers Wonham filter as composition of
prox. operators

— Our prior work: recovered Kalman-Bucy filter (CDC
2017, ACC 2018) as composition of prox. operators

— Future work: computation for nonlinear filtering
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