
Proximal Recursion for the Wonham Filter

Abhishek Halder1, and Tryphon T. Georgiou2

Abstract— This paper contributes to the emerging viewpoint
that governing equations for state estimation, conditioned on
the history of noisy measurements, can be viewed as gradient
flow on the manifold of joint probability density functions with
respect to suitable metrics. Herein, we focus on the Wonham
filter where the prior dynamics is given by a continuous time
Markov chain on a finite state space; the measurement model
includes noisy observation of the (possibly nonlinear function
of) state. We establish that the posterior flow given by the
Wonham filter can be viewed as the small time-step limit of
proximal recursions of certain functionals on the probability
simplex. The results of this paper extend our earlier work where
similar proximal recursions were derived for the Kalman-Bucy
filter.

I. INTRODUCTION

We consider the problem of estimating the state of a
continuous time Markov chain X(t) on finite state space
Ω = {a1, . . . , am} with m × m transition1 rate matrix Q,
i.e.,

Qij ≥ 0, for i ∕= j, and Qii = −
m󰁛

j=1

j ∕=i

Qij < 0.

In words, matrix Q has non-negative off-diagonal and nega-
tive diagonal elements such that each row sum equals zero.
To ease notation, we hereafter write X(t) ∼ Markov (Q).
Suppose that one observes the process Z(t) governed by the
Itô stochastic differential equation (SDE)

dZ(t) = h (X(t)) dt+ σV (t) dV (t), (1)

where h(·) is a deterministic injective function of the state,
σV (t) is continuously differentiable and bounded away from
zero for all t ≥ 0, and the standard Wiener process V (t)
is independent of the process X(t). One typically refers to
h(·) as the sensing or measurement model, and V (t) as the
measurement noise. Given the history of noisy observation
{Z(s), 0 ≤ s ≤ t}, the objective of the estimation problem
is to compute the conditional probability of the state X(t),
i.e., to compute the posterior probabilities

π+
i (t) :=P

󰀋
X(t) = ai |Z(s), 0 ≤ s ≤ t

󰀌
, i = 1, . . . ,m. (2)

Let the initial occupation probability (row) vector be π0

satisfying π0 ≥ 0 elementwise, and π01 = 1, where 1

denotes a column vector of ones. The time evolution of the
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1We suppose that the Markov chain is time-homogeneous, i.e., the
associated transition probability matrix is exp(Qt) for all t ≥ 0.

prior distribution π−(t) := {π−
1 (t), . . . ,π

−
m(t)} is governed

by the ordinary differential equation (ODE)

π̇−(t) = π−(t)Q, π−(0) = π0. (3)

In other words, (3) gives the unconditional probabilities of
the state X(t), i.e., π−

i (t) = P(X(t) = ai), i = 1, . . . ,m.
In [1], Wonham showed that for the state-observation

model given by

X(t) ∼ Markov (Q) , (4a)
dZ(t) = h (X(t)) dt+ σV (t) dV (t), (4b)

the posterior probability π+(t) := {π+
1 (t), . . . ,π

+
m(t)}

evolves according to the Itô SDE

dπ+(t) = π+(t)Q dt+
1

(σV (t))
2π

+(t)
󰀓
H − 󰁥h(t)I

󰀔
×

󰀓
dZ(t)− 󰁥h(t)dt

󰀔
, (5)

with initial condition π+(0) = π0, where

H := diag (h(a1), . . . , h(am)) , 󰁥h(t) :=
m󰁛

i=1

h(ai)π
+
i (t).

(6)

The vector SDE (5) has since been known as the Wonham
filtering equation that allows computing the conditional prob-
abilities of the state. Reference [1, eqn. (21)] derived (5)
with h(·) as the identity map; the form (5) has appeared
in the literature since then – for recent references see e.g.,
[2, eqn. (2)] and [3, eqn. (5)]. Having obtained π+ from
(5), assuming that the points in Ω are elements of a linear
space, one can compute the optimal (in the minimum mean
squared error sense) state estimate given by the conditional
expectation

󰁥X(t) := E [X(t) | Z(s), 0 ≤ s ≤ t] =

m󰁛

i=1

aiπ
+
i (t). (7)

The purpose of this paper is to give new variational in-
terpretation of the flow π+(t) governed by (5). Specifically,
we seek a gradient flow description for the evolution of the
posterior or conditional probability on the standard simplex

∆m−1 := {π ∈ Rm
≥0 | π1 = 1}. (8)

Such interpretations were uncovered in [6] for nonlinear
filtering with zero prior dynamics and, more generally, in
our recent works [4], [5] for the Kalman-Bucy filter. Results
of such flavor are not only fundamental in systems-theoretic
context, but may also be transformative in computation since
they open up the possibility to solve the filtering equations



Fig. 1: The block diagram showing the prior and posterior com-
putation as sequential proximal updates given by (10) for k ∈ N.

via proximal algorithms [9], [10]. This is pursued in [11],
[12] for fast computation of the prior joint probability density
functions without spatial discretization.

This paper is structured as follows. In Section II, we
outline the main ideas for gradient flow formulation via prox-
imal recursion. The recursions for computing the posterior in
the Wonham filter are derived in Section III, followed by the
same for the computing the prior in Section IV. Numerical
examples are given in Section V to illustrate the scope of
the proposed framework. Section VI concludes the paper.

Notations: We use ◦ to denote function composition, and
〈·, ·〉 to denote the standard Euclidean inner product. The no-
tation ∇x stands for standard Euclidean gradient w.r.t. vector
x. Furthermore, ⊙ denotes elementwise multiplication. The
notation exp(·) with vector argument means elementwise
exponential, and the same with matrix argument denotes the
exponential matrix.

II. MAIN IDEA

We adopt a metric viewpoint of gradient flow that approx-
imates the flow of probability distribution π(t) starting from
a given initial condition π0 := π(0), as the small time-step
limit of a variational recursion in the form

pk(λ) = arg inf
p

1

2
d2 (p,pk−1) + λΦ(p), (9)

where p0 ≡ π0, k ∈ N, and λ is the step-size. Here, d(·, ·) is
a distance functional between two probability distributions,
and the functional Φ(·) depends on the generator of the flow
π(t). In particular, the functionals d(·, ·) and Φ(·) are to be
chosen such that pk(h) → π(t = kλ) as λ ↓ 0.

The recursion (9) is reminiscent of the Euclidean setting,
where the gradient flow for the ODE ẋ = −∇xΦ(x) can be
approximated via a recursion of the form (9) with d(·, ·) as
the Euclidean distance metric, and Φ(·, ·) as in the argument
generating the vector field. In the optimization literature,
the operators associated with such recursions are termed as
Moreau-Yosida proximal operators [7]–[10], denoted as

proxdλΦ,

which reads, proximal operator for functional λΦ w.r.t. d.
Likewise, we use the same notation for the right-hand-side of
(9) in our more general setting. This allows interpreting the
discrete time-stepping as steepest descent of the functional Φ
w.r.t. distance d. Proximal operators have also been used in

general Hilbert spaces [13], and in the space of probability
density functions [4], [5], [11], [12], [14], [15]. The idea
of applying proximal recursion in the space of probability
measures appeared first in [14]; see also [15].

In the filtering context, we think of the computation of
prior followed by that of posterior, as composition of re-
spective proximal operators. Denoting the approximate prior
and posterior probability vectors for the proximal recursions
associated with Wonham filter as p−

k and p+
k , respectively,

we write

p−
k (λ) = proxd

−

λΦ−

󰀃
p+
k−1

󰀄

= arg inf
p∈∆m−1

1

2

󰀃
d−

󰀃
p,p+

k−1

󰀄󰀄2
+ λΦ−(p), (10a)

p+
k (λ) = proxd

+

λΦ+

󰀃
p−
k

󰀄

= arg inf
p∈∆m−1

1

2

󰀃
d+

󰀃
p,p−

k

󰀄󰀄2
+ λΦ+(p), (10b)

where k ∈ N, λ > 0 is the step-size, and (d±,Φ±) are to be
determined functional pairs guaranteeing p+

k (λ) → π+(t =
kλ) as λ ↓ 0, wherein π+(t) solves (5). In other words,
(d±,Φ±) are to be designed such that the composite map
proxd

+

λΦ+ ◦ proxd
−

λΦ− approximates the flow of (5) in small
time-step limit (see Fig. 1).

Next, we focus on the problem of designing the pair
(d+,Φ+) in (10b).

III. PROXIMAL RECURSION FOR THE POSTERIOR

We first derive a proximal recursion of the form (10b) for
the posterior update in the special case Q ≡ 0 (Section III-
A). The proof for the same recovers the explicit stochastic
integral formula given in [1, eqn. (5)]. We then show that
the same proximal recursion applies for the general Q ∕= 0
case (Section III-B).

A. The Case of Zero Prior Dynamics

As in [1, Section 2], we start with the simple case when
the state X , instead of being a Markov chain, is a random
variable taking values in Ω = {a1, . . . , am} with a (known)
prior probability distribution p0 ∈ ∆m−1 at t = 0.

For k ∈ N, let tk−1 := (k− 1)λ where λ is the step size,
and let {Zk−1}k∈N be the sequence of samples of the process
Z(t) at {tk−1}k∈N. Introducing Yk−1 := (Zk−Zk−1)/λ, we
consider the functional

Φ+(p) :=
1

2 (σV (tk−1))
2E

󰁫
(Yk−1 − h)

2
󰁬
, (11)

where the expectation operator E [·] is taken w.r.t. the prob-
ability vector p ∈ ∆m−1. The following result shows that
with Φ+ as in (11), the functional 1

2 (d
+)2 in (10b) can be

taken as the Kullback-Leibler divergence DKL, given by

DKL(α 󰀂 β) :=

m󰁛

i=1

αi log(αi/βi), for α,β ∈ ∆m−1. (12)

In other words, (10b) can be viewed as an entropic proximal
mapping [16], [17].



Theorem 1. Let Φ+(p) be as in (11), and consider the
proximal recursion

p+
k (λ) = arg inf

p∈∆m−1

DKL

󰀃
p 󰀂 p−

k

󰀄
+ Φ+(p), k ∈ N, (13)

with initial condition p0 ∈ ∆m−1. Let π+(t) be the flow
generated by (5) with Q ≡ 0 and initial condition π+(0) ≡
p0. Then p+

k (λ) → π+(t = kλ) as λ ↓ 0.

Proof. See Appendix A. 󰃈

B. The General Case

In the following, we formally state and prove that in the
general case Q ∕= 0, the recursion (13) still applies for the
posterior computation. Compared to the proof of Theorem
1, the proof now will differ since the map p+

k−1 󰀁→ p−
k is no

longer identity, and one does not have an analytical solution
for the SDE (5) for Q ∕= 0, in general.

Theorem 2. Let Φ+(p) be as in (11), and consider the
proximal recursion

p+
k (λ) = arg inf

p∈∆m−1

DKL

󰀃
p 󰀂 p−

k

󰀄
+ Φ+(p), k ∈ N, (14)

with initial condition p0 ∈ ∆m−1. Let π+(t) be the flow
generated by (5) with initial condition π+(0) ≡ p0. Then
p+
k (λ) → π+(t = kλ) as λ ↓ 0.

Proof. See Appendix B. 󰃈

IV. PROXIMAL RECURSION FOR THE PRIOR

We now derive a proximal recursion of the form (10a)
for the prior update. We assume that the Markov chain
X(t) is irreducible. Then, X(t) has a unique stationary
distribution vector π∞ which is the limit limt→∞ π−(t) and
is elementwise positive. We further assume that the Markov
chain is reversible, i.e., that the detailed balance condition

(π∞)iQ(i, j) = (π∞)jQ(j, i) (15)

holds. Here (·)i denotes the ith entry of.
Starting from a known probability distribution

π−(tk−1) = p+
k−1(λ), for tk−1 = (k − 1)λ,

the evolution of the prior π−(t) of X(t) is governed by the
prior dynamics (3). Thus,

π−(tk−1 + λ󰁿 󰁾󰁽 󰂀
tk=kλ

) = p+
k−1(λ) exp (λQ) ,

equivalently, p+
k−1(λ) = π−(tk) exp (−λQ). Hence,

p+
k−1(λ) = π−(tk)(I − λQ) + o(λ), (16)

where o(λ) signifies the “order of”.
As a consequence of (15), the transition rate matrix Q

defines a symmetric operator when considered with respect
to the inner product

〈p, q〉π∞ :=
󰁛

i

(p)i(q)i
(π∞)i

.

Indeed, if Dπ∞ denotes the diagonal matrix formed with the
entries of π∞, then in matrix notation, (15) becomes

Dπ∞Q = QTDπ∞ , (17)

and

〈pQ, q〉π∞ = pQD−1
π∞

qT

= pD−1
π∞

QTqT

= 〈p, qQ〉π∞ ,

where, in the above, T denoting matrix/vector transposition.
We can now express p−

k (λ) as a solution to a proximal
recursion. Define the quadratic form

Φ−(p) = −1

2
〈pQ,p〉π∞ , (18)

and denote

󰀂p󰀂2π∞
= 〈p,p〉π∞ .

Theorem 3. Let Φ−(p) be as in (18). The λ-approximate
prior satisfies the following proximal recursion

p−
k (λ) = arg inf

p∈∆m−1

1

2
󰀂p− p+

k−1󰀂
2
π∞

+ λΦ−(p). (19)

Proof. The stationarity condition for (19) becomes

0 =
∂

∂p

󰀕
1

2
󰀂p− p+

k−1󰀂
2
π∞

+ λΦ−(p)

󰀖

= (p− p+
k−1)D

−1
π∞

− λp
1

2

󰀃
QD−1

π∞
+D−1

π∞
QT

󰀄

= (p− p+
k−1)D

−1
π∞

− λpQD−1
π∞

,

since D−1
π∞

QT = QD−1
π∞

from (17). Here, by 0 we denote
the zero vector of compatible dimensions. Thus,

p+
k−1(λ) = p(I − λQ).

For sufficiently small λ, the matrix I −λQ is invertible and
the unique minimizer p has positive entries. Moreover, since
Q1 = 0, p1 = 1 and hence p ∈ ∆m−1, thus, we set

p−
k (λ) = p+

k−1(λ)(I − λQ)−1.

Comparing with (16) we see that

p−
k (λ) = π−(kλ) + o(λ),

which is our desired result. 󰃈

V. NUMERICAL EXAMPLES

To illustrate the proximal recursions proposed in Sections
III and IV, we now give two numerical examples. Both of our
examples concern estimating the state of a 3-state continuous
time Markov chain, the first one being reversible while the
second is not.



(a) A sample path of the state X(t) (top) and of the observation
process Z(t) (bottom) shown for Example 1 in Section V.

(b) Starting from the initial occupation probability vector
(1/3, 1/3, 1/3), shown above are sample paths for the first (in
top), the second (in middle), and the third (in bottom) component
of the true (black, solid) and approximate (red, dashed) posterior
probability vectors for Example 1 in Section V.

Fig. 2: Simulation results for Example 1 in Section V.

(a) A sample path of the state X(t) (top) and of the observation
process Z(t) (bottom) shown for Example 2 in Section V.

(b) Starting from the initial occupation probability vector
(1/3, 1/3, 1/3), shown above are sample paths for the first (in
top), the second (in middle), and the third (in bottom) component
of the true (black, solid) and approximate (red, dashed) posterior
probability vectors for Example 2 in Section V.

Fig. 3: Simulation results for Example 2 in Section V.



A. Example 1

We consider estimating the state of an irreducible Markov
chain X(t) taking values in {−1, 0, 1} with rate matrix

Q =

󰀵

󰀷
−1 1/2 1/2
2 −2 0
3 0 −3

󰀶

󰀸 . (20)

It is easy to verify that the stationary distribution π∞ =
(12/17, 3/17, 2/17), and that the reversibility condition (15)
holds. In (4b), we set h(X(t)) = 0.01X(t), and σV = 0.01.

Fig. 2a shows a sample path for X(t), and the same for
Z(t). In Fig. 2b, we compare the time evolution of the
components of the associated posterior probability vector
π+(t) from the Wonham filter (in black, solid), with the
same of the approximator p+

k (λ) (in red, dashed) computed
via the proposed proximal recursion framework (Fig. 1) with
step-size λ = 10−3 and t ∈ [0, 1]. We only show here the
result for a fixed initial condition π0 = (1/3, 1/3, 1/3); the
trends are similar for other initial conditions. Computing
π+(t) in the Wonham filter entails numerically solving
the system of coupled nonlinear SDEs (5), done here via
the Euler-Maruyama method. In contrast, computing p+

k (λ)
entails recursive evaluation of (33) and (24). In our numerical
experiments, the latter was observed to enjoy about an order
of magnitude computational speed up. Fig. 2b shows that the
respective posterior sample paths match, as predicted.

B. Example 2

Next we consider a Markov chain X(t) taking values in
{−1, 0, 1} with rate matrix

Q =

󰀵

󰀷
−5 3 2
4 −10 6
3 4 −7

󰀶

󰀸 , (21)

and h(·), σV , λ as before. Here again, for t ∈ [0, 1],
we compare the posterior sample paths computed from the
Wonham filter (5) with its approximator computed via the
proposed proximal recursion approach. Notice that for prior
computation, although one does not have a metric version
of the variational formula (10a), the approximation (33) still
applies for small λ. Thus, p+

k (λ) can still be computed by
recursive evaluation of (33) and (24).

Fig. 3a shows a sample path for X(t), and the same for
Z(t). In Fig. 3b, we show the corresponding π+(t) from the
Wonham filter (in black, solid), and p+

k (λ) (in red, dashed)
from the proximal recursion for this case, starting from the
initial condition π0 = (1/3, 1/3, 1/3). The respective sample
paths are in agreement, as expected.

VI. CONCLUSIONS

This purpose of this paper is to expand on the list of
examples where the governing equations for state estimation,
conditioned on the history of noisy measurements, can be
expressed as gradient flow on a space of probability density
functions with respect to a suitable metric. This viewpoint
promises a new class of estimation algorithms, taking advan-
tage of implementation of flows via recursive application of

proximal projections. Prior work elucidated the case of the
Kalman-Bucy filter, and therefore, in the present work we
sought to extend the paradigm to case of the Wonham filter.
The latter estimates the state of a continuous time Markov
chain on a finite state space based on noisy observations. In
this paper we have established that the posterior flow that is
provided by the Wonham filter can be expressed as the small
time-step limit of proximal recursions of certain function-
als on the probability simplex. Our preliminary numerical
experiments reported here hint at possible computational
advantages of the proposed approach, especially for large
Markov chains. This will be systematically investigated in
our future work.
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APPENDIX

A. Proof of Theorem 1

With the stated choices for the pair (d+,Φ+), we are led to
the proximal map of the form

arg inf
p∈∆m−1

DKL

󰀃
p 󰀂 p−

k

󰀄
+ 〈ck−1,p〉, k ∈ N, (22)

where the i-th component of the row vector ck−1 is

ck−1(i) :=
λ

2 (σV (tk−1))
2 (Yk−1 − h(ai))

2
, i = 1, . . . ,m.

(23)

The objective in (22) is strictly convex since DKL is strictly
convex in p, and the other summand is linear in p. Therefore,
the arg inf in (22), which we denote by p+

k , is unique. By
direct calculation (setting the gradient of Lagrangian w.r.t. p
to zero, and enforcing the constraint p1 = 1), we get

p+
k = p−

k ⊙ exp (−ck−1) /
󰀃󰀃
p−
k ⊙ exp(−ck−1)

󰀄
1
󰀄
. (24)

Since in this case, we have no prior dynamics, therefore
p−
k ≡ p+

k−1 for all k ∈ N. Hence, we can rewrite (24) in
terms of the prior probability distribution p0 as

p+
k = p0 ⊙ exp(−γk−1)/ ((p0 ⊙ exp(−γk−1))1) , (25)

where the 1×m vector

γk−1 :=

k󰁛

r=1

cr−1. (26)

Noting that (25) is simply normalization (i.e., Kullback-
Leibler projection onto probability simplex) of the vector
p0 ⊙ exp(−γk−1), we now unpack γk−1 as function of λ
and the sampled process {Zk−1}k∈N.

Because h(·) is injective, the random variable 󰁨X := h(X)
takes values in {󰁨a1, . . . ,󰁨am}, and 󰁨X = 󰁨ai := h(ai) with
probability p0(i). Combining (23) and (26), we then have

γk−1(i) =
λ

2

k󰁛

r=1

(Yr−1 − 󰁨ai)2

(σV (tr−1))
2 , i = 1, . . . ,m. (27)



Expanding the square in the numerator of each summand in
(27), substituting Yr−1 = (Zr − Zr−1)/λ for r = 1, . . . , k,
and rearranging yields

γk−1(i) =
1

2

k󰁛

r=1

(Zr − Zr−1)
2

λ (σV (tr−1))
2

󰁿 󰁾󰁽 󰂀
term 1

−󰁨ai
k󰁛

r=1

Zr − Zr−1

(σV (tr−1))
2

󰁿 󰁾󰁽 󰂀
term 2

+
1

2
󰁨a2i

k󰁛

r=1

λ

(σV (tr−1))
2

󰁿 󰁾󰁽 󰂀
term 3

. (28)

To simplify the term 1 indicated in (28), we use the Euler-
Maruyama update for (1) given by

Zr = Zr−1 + h(ai)λ+ σV (tr−1) (Vr − Vr−1) +O(λ2),
(29)

where r = 1, . . . , k, and the increments (Vr−Vr−1) are i.i.d.
zero mean normal random variables with variance λ. From
(29), we get

(Zr − Zr−1)
2
= (σV (tr−1))

2
λ, (30)

where we used2 λ2 = 0, (Vr − Vr−1)
2 = λ, and (Vr −

Vr−1)λ = 0. Consequently, term 1 in (28) equals k/2.
Combining (25), (28), and (30), we thus obtain

p+
k (i) =

p0(i) exp(−k/2 + term 2 − term 3)
m󰁛

i=1

p0(i) exp(−k/2 + term 2 − term 3)

. (31)

Passing (31) to the limit λ ↓ 0, recalling that 󰁨ai = h(ai),
and that the time interval [0, t] was divided into sub-intervals
with breakpoints t0 ≡ 0, t1, . . . , tk ≡ t, we arrive at

lim
λ↓0

p+
k (i) =

p0(i) exp
󰀓
h(ai)

󰁕 t

0
dZ(s)

(σV (s))2
− 1

2 (h(ai))
2
󰁕 t

0
ds

(σV (s))2

󰀔

󰁓m
i=1 p0(i) exp

󰀓
h(ai)

󰁕 t

0
dZ(s)

(σV (s))2
− 1

2 (h(ai))
2
󰁕 t

0
ds

(σV (s))2

󰀔 .

(32)

The right-hand-side of (32) is exactly the solution of the
SDE (5) for Q ≡ 0 with initial condition π+(0) = p0; see
[1, Appendix 2] for a proof. Therefore, we conclude that
lim
λ↓0

p+
k = π+(t = kλ), as desired. 󰃈

B. Proof of Theorem 2

We start by noting that the development in Appendix A
up to expression (24) still applies. Also, since h(·) is in-
jective, the process h(X(t)) ∼ Markov(Q) takes values in
{h(a1), . . . , h(am)}.

For X(t) ∼ Markov(Q), the map p+
k−1 󰀁→ p−

k , k ∈ N,
corresponding to the Euler discretization of (3) is

p−
k = p+

k−1 (I + λQ) +O(λ2). (33)

2These are equivalent to the well-known relations in stochastic calculus:
(dt)2 = 0, (dV )2 = dt, and dV dt = 0.

Let ∆Zk−1 := Zk − Zk−1. Substituting Yk−1 = ∆Zk−1/λ
in (23), expanding the square, and using (30), we have

exp(−ck−1(i)) = exp(−1/2)× exp

󰀣
h(ai)∆Zk−1

(σV (tk−1))
2

󰀤
×

exp

󰀣
− λ(h(ai)

2

2 (σV (tk−1))
2

󰀤
, (34)

for i = 1, . . . ,m.
Up to first order, the second exponential factor in (34)

approximates as 1+h(ai)∆Zk−1/ (σV (tk−1))
2. For the third

exponential factor in (34), notice that since λ ≡ dt for λ ↓ 0,
therefore from (4b), we have h2(ai) = (dZ−σV dV )2/λ2 =
0, wherein we used (dZ)2 = σ2

V λ, (dV )2 = λ, and λdV =
0. Putting these together, (34) yields

exp(−ck−1(i)) ≈ exp(−1/2)

󰀣
1 +

h(ai)∆Zk−1

(σV (tk−1))
2

󰀤
. (35)

Substituting for p−
k and exp(−ck−1) in (24) from (33)

and (35), respectively, we get

p+
k (i) = ν(i)/δ, i = 1, . . . ,m, (36)

where

ν(i) :=

󰀳

󰁃p+
k−1(i) + λ

m󰁛

j=1

p+
k−1(j)Q(i, j)

󰀴

󰁄
󰀣
1 +

h(ai)∆Zk−1

(σV (tk−1))
2

󰀤
,

(37a)

δ :=

m󰁛

i=1

ν(i). (37b)

From (29), we observe that λ∆Zk−1 = h(ai)λ
2 +

σV (tk−1)λ(Vk − Vk−1) = 0, as both λ2 and λ(Vk − Vk−1)
are zero. This allows us to simplify (37a) as

ν(i) = p+
k−1(i) +

∆Zk−1

(σV (tk−1))
2h(ai)p

+
k−1(i)

+ λ

m󰁛

j=1

p+
k−1(j)Q(i, j) +O(λ2), (38)

and consequently, (37b) reduces3 to

δ =

m󰁛

i=1

ν(i) = 1 +
∆Zk−1

(σV (tk−1))
2
󰁥h(tk−1). (39)

Combining (36), (38) and (39), we obtain

p+
k (i)− p+

k−1(i)=

󰀣
∆Zk−1

(σV (tk−1))
2p

+
k−1

󰀓
h(ai)− 󰁥h(tk−1)

󰀔

+λ

m󰁛

j=1

p+
k−1(j)Q(i, j)

󰀴

󰁄×
󰀣
1 +

∆Zk−1

(σV (tk−1))
2
󰁥h(tk−1)

󰀤−1

.

(40)

Up to first order, the second factor in (40) approximates as
1−∆Zk−1

󰁥h(tk−1)/ (σV (tk−1))
2. Using this approximation

3We use here that
󰁓m

i=1 Q(i, j) = 0 for all j = 1, . . . ,m.



together with (∆Zk−1)
2 = λ(σV (tk−1))

2 (from (30)), and
that λ∆Zk−1 = 0 (as before), (40) simplifies as

p+
k (i)−p+

k−1(i)= λ

m󰁛

j=1

p+
k−1(j)Q(i, j) +

p+
k−1(i)

(σV (tk−1))
2×

󰀓
h(ai)− 󰁥h(tk−1)

󰀔󰀓
∆Zk−1 − 󰁥h(tk−1)λ

󰀔
, (41)

which is exactly the first order (Euler-Maruyama) discretiza-
tion of the SDE (5). Specifically, in the limit λ ↓ 0, (41)
reduces to (5). Hence the statement. 󰃈
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and in the space of probability measures. Springer Science & Business
Media, 2008.

[16] M. Teboulle, “Entropic proximal mappings with applications to non-
linear programming”. Mathematics of Operations Research, Vol. 17,
No. 3, pp. 670–690, 1992.

[17] Y. Censor, and S.A. Zenios, “Proximal minimization algorithm with
D-functions”. Journal of Optimization Theory and Applications, Vol.
73, No. 3, pp. 451–464, 1992.


