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Demand Response: what, why, how

Generators Loads
Traditional paradigm: demand is uncertain

Operational model: supply follows demand

Mechanism: operating reserve



Demand Response: what, why, how

Generators

New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response



Demand Response: what, why, how

Generators

New paradigm: both supply and demand are uncertain

Operational model: demand follows supply

Mechanism: demand response of thermal inertial loads



Dynamics of AC state (s,6,0) € R*> x {0,1}

ON
OFF

OFF

2A



Dynamics of AC state (s,6,0) € R*> x {0,1}

U=s+A A
ON
OFF 2A
OFF
L=s—A y

Newton’s law of heating/cooling: § = —a (6(t) — 6,(t)) — BPo(t)
1 if (1) >U
ON/OFF mode switching: o(t) = 0 if 6(f) <L

o(t”) otherwise
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Research scope

Objective: A theory of operation for the LSE

Challenges:

1. How to design the target consumption as a function
of price?

2. How to control so as to preserve privacy of the loads’
states?

3. How to respect loads” contractual obligations (e.g.
comfort range width A)?



Problem types

Price type Day ahead | Real time
Load type

Single large commercial

Many homes

Let’s focus on many homes + day ahead price



Two layer block diagram

First layer: planning optimal consumption Second layer: setpoint control

'(Energy budget, Time horizon) =(F, T).
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First layer: planning optimal consumption

price
forecast
mlmmlze P x| t up(t) +ua(t) + ... +un(t)) dt
{ur (8)un (£) {0, 13N / )

subject to

1) 6 =—a (ei(t)—e?( )) BPui(t)  Vi=1,...,N,
(2) /OT (i () +ua(t) + ... +un(t)) dt =1 = §(< T, given)

3) LY <6t <uy Vi=1,...,N.

Optimal consumption: P; (t) = P Z u;



Second layer: setpoint control

optimal
reference error measured

I N I I

ref Z e(t) = :ef<t>_ P(t) ;T

i=1
PID velocit trol
Te octty contro gain  broadcast
I
t d ds; |

o(t) = ke(t) +k [ e(@)ds+higet), — T= B o)



Second layer: setpoint control
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Control problems

First layer
" W \/
Lo

when to switch?

Second layer

Ut

Ly

how to move setpoint boundaries?

control variable

o(t)

control variable
ds

dt



Direct numerical solution
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Direct numerical solution: P} (t) = 50P

Setpoint velocity control has good tracking performance
(kp, ki, ka)
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Fairness in setpoint velocity control

(kp, ki, ka)
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What does "fairness" mean?

all deadbands hit zero at the same time
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identical states (room temperatures)
see identical controls (setpoint velocity)
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no contractual constraints, fairness
is not an issue



Direct numerical solution: Houston data

Data for May 20, 2015, 4-6 PM
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Direct numerical solution: Houston data
(kp;kiykd)
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Analytical solution for planning problem



Analytical solution for planning problem
Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.



Analytical solution for planning problem
Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.

Price curve Optimal control
A A
m(t) uis(t)
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Analytical solution for planning problem
Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.

Price curve Optimal control
A A
m(t) uf(t)
1 1 1 -------
- = T > 0 T T—7 T2



rice ($/MWh) 7(t)

P

Analytical solution for planning problem

N > 1 homes. Constraints (1) and (2) active.

T
Fr (%) £ /0 1a<m dt, 7 2inf{7 € R : Fo(7) =1},

1 Vtes,
0 otherwise.

SE{se0,T]:m(s) <}, u*(t) = {

Optimal actions are synchronized



Analytical solution for planning problem
Constraints (1), (2) and (3) active.

Case I: large A & 30 s.t. VO) € Oy, 07,5(t) = 07,(t)



Analytical solution for planning problem
Constraints (1), (2) and (3) active.

Case I: large A & 30 s.t. VO) € Oy, 07,5(t) = 07,(t)
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Analytical solution for planning problem
Constraints (1), (2) and (3) active.

Case I: large A & 30 s.t. VO) € Oy, 07,5(t) = 07,(t)




Understanding large A condition (lin traj)

Suppose 0 = {+oc . We have

2A > a(T—T1)VPBT
0

30y = [L+[(D€+ﬁ)T—D&T]+,U—(X(T—T)]
L< <U

{:Lfor;e(o 7]

> L for 7 € (ﬁ,l]

OFF Vte (0,T—1)

If 8y € ©p, then optimal policy =
e pRmat poney {ON Vie[T—1,T]

Le., 07y5(t) = 07,(t)



Understanding large A condition (exp traj)

Suppose 0 = —a (6(t) — 6,) — BPu. We have

20 > (L (€T —1) + 0, + fjp) v ((ea —u) (e"‘(T_T) - 1))
T

o

10y = {L v <9a +e*T (L — 20,6 %" + ﬁPe‘”)) (U —6,)eT-7) ¢,

OFF Vte (0,T—1)

If 6 € @9, then optimal policy = {ON Vte [T —1,T]
c - 7T,

Le., 013 (t) = 6, (t)



Analytical solution for planning problem

Constraints (1), (2) and (3) active.

Case II: 0730 (1) = 10 0 (9;*2“) (t)), where ¥, ; (-) is
the two-sided Skorokhod map in [L, U]



Digression: Skorokhod map ¥
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Digression: Skorokhod map Y

8
=
v

2(t) = 2(t) + sup [—z(s)]" (Skorokhod, 1961)
0<s<t



Digression: Two-sided Skorokhod map
Yru

AL (6(8) = 6(t) — sup <[¢(s)—U]+A inf <¢<r>—L))

0<s<t s<r<t

Wi (2(8) = (t) + sup [L—a(s)]*

(Kruk, Lehoczky, Ramanan, Shreve, 2007)



Analytical solution for planning problem
Constraints (1), (2) and (3) active.

Case II: 0732 (1) = 00 (9;51‘) (t)), where ¥, ; (-) is
the two-sided Skorokhod map in [L, U]
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Summary

v

A simple framework for optimal demand response.

» Designs optimal target consumption using forecast.
g P g p g

v

Tracks the designed target consumption in real-time.

v

LSE does not need to know individual states = preserves
privacy.



Summary

v

A simple framework for optimal demand response.

» Designs optimal target consumption using forecast.
g P g p g

v

Tracks the designed target consumption in real-time.

v

LSE does not need to know individual states = preserves
privacy.

Thank you



Performance

Planning problem

Optimal control ;
s (t) > P ref (t)

Price stochastic process Optimal reference power
stochastic process

=
: 1(t) — P(t)
Ly =Ly V (s(t) — A) e
U = Uy A (s(t) + A) ds(t) =6 (A)v(t) dt
(L1, Uy) = s(t) =< e(t)
Boundary Setpoint Error
stochastic processes stochastic process stochastic process
U — Ly
1 T
t) — > RERT
weff( ) )\T = hr{)l — 1{0<weff(t)<e} dt
Effective width el0 €
stochastic process Local time of effective width process

Limit of performance



Real time market + large commercial load

T
minimize E [/ {NRTPL! + 7 (6—6,)* } dt}
) 0

() € Lp (0 ey

subject to

(1) 6(t) = —a (6(t) — 6a(t)) — BPu(t),

[ODE for continuous state 6]

(2) m é (TCRT/ 911) ~ Q = QT(RT & Q@a‘
[finite state continuous time Markov chain for m]

State: (6, m) € R x | M|, where |M| = 1y, ng,
Find: optimal (indicator) feedback u*(t) = 1pgm) € {0,1}



HJB for controlled Markov jump process

Value function: V; 2V (§,m =i), i =1,2,...,| M|

H]JB: .
0= inf trrPu + v (9 — Qd)z + AL
ll(') 6173(9,”1{"[,9{1) at
AV, ]
+ 90 {—DC(Q—QQ)—‘BPM}—F qu] (V]‘—Vi)
=1
Vi = 1,2,...,‘./\/”

Involves optimization problem:

1I(1§ 7TRTP u—+

aV;
ag{—(x(f)—Ga)—/BPu}]

T'(u)

= IfI'(1) —T(0) = Vi

< (>)0, then u* = 1(0)



What can we tell about the value function

Optimality condition: If aa‘gi > (<) HRE(t), then u*(t) = 1(0)

Notice:
Optimality condition is invariant under convexification
ue{0,1} »uel01]

Lemma: Vi[(] . is convex in 6.

Ongoing: code for value iteration, Q-learning.



Value iteration

Bellman equation:

Vi(i) = min ) + Y pi (W) Viea () |, Vr = zeros(n, 1).
ue{0,1} jex

Suppose we make 100 discretizations for 6 € [18,22], and 40
discretizations for price rtrr € [50,100]. Let’s make ambient

8, = 32 deg Celcius (constant). Then state space is a 100 x 40
grid. In Bellman equation, n = 100 x 40 = 4000, and the
indices 7,j = 1,2,...,n. The time index k runs backwards. So

k +1+— k means a negative 15 minutes time-step. Take actual
final time T = 2 * 3600. [p;;] is a transition probability matrix of
size n X n = 4000 x 4000, and is constructed as P = Py ® Py,
where Py is of size 100 x 100, and P, is of size 40 x 40. The
symbol & denotes kronecker product (MATLAB kron).



