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Demand Response: what, why, how

Traditional paradigm: demand is uncertain

Operational model: supply follows demand

Mechanism: operating reserve
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Mechanism: demand response
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Dynamics of AC state (s, θ, σ) ∈ R2× {0, 1}

Newton’s law of heating/cooling: θ̇ = −α (θ(t)− θa(t))− βPσ(t)

ON/OFF mode switching: σ(t) =


1 if θ(t) ≥ U

0 if θ(t) ≤ L

σ(t−) otherwise



Dynamics of AC state (s, θ, σ) ∈ R2× {0, 1}

Newton’s law of heating/cooling: θ̇ = −α (θ(t)− θa(t))− βPσ(t)

ON/OFF mode switching: σ(t) =


1 if θ(t) ≥ U

0 if θ(t) ≤ L

σ(t−) otherwise



Proposed architecture



Research scope

Objective: A theory of operation for the LSE

Challenges:

1. How to design the target consumption as a function
of price?

2. How to control so as to preserve privacy of the loads’
states?

3. How to respect loads’ contractual obligations (e.g.
comfort range width ∆)?



Problem types

``````````````̀Load type
Price type

Day ahead Real time

Single large commercial . . . . . .

Many homes . . . . . .

Let’s focus on many homes + day ahead price



Two layer block diagram



First layer: planning optimal consumption

minimize
{u1(t),...,uN(t)}∈{0,1}N

∫ T

0
P

price
forecast

π (t) (u1(t) + u2(t) + . . . + uN(t)) dt

subject to

(1) θ̇i = −α
(

θi(t)− θ̂a(t)
)
− βPui(t) ∀ i = 1, . . . , N,

(2)
∫ T

0
(u1(t) + u2(t) + . . . + uN(t)) dt = τ

·
=

E
P
(< T, given)

(3) L(i)
0 ≤ θi(t) ≤ U(i)

0 ∀ i = 1, . . . , N.

Optimal consumption: P∗ref (t) = P
N

∑
i=1

u∗i (t)



Second layer: setpoint control

optimal
reference

P∗ref(t) = P
N

∑
i=1

u∗i (t),  

error

e(t) = P∗ref(t)−

measured

P(t) ,  

v(t) =

PID velocity control

kpe(t) + ki

∫ t

0
e(ς)dς + ki

d
dt

e(t) ,  
dsi

dt
=

gain

∆i

broadcast

v(t) ,

 L(i)
t = L(i)

0 ∨ (si(t)− ∆i) , U(i)
t = U(i)

0 ∧ (si(t) + ∆i) .



Second layer: setpoint control



Control problems



Direct numerical solution
Given: distribution of the N = 100 loads’

initial conditions (s0, θ0, σ0), and their contracts (∆)



Direct numerical solution: P∗ref(t) = 50P
Setpoint velocity control has good tracking performance



Fairness in setpoint velocity control



Direct numerical solution: Houston data

Data for May 20, 2015, 4–6 PM



Direct numerical solution: Houston data



Analytical solution for planning problem

Intuition: what if price were monotone in time?

Assume: N = 1 home. Constraints (1) and (2) active.
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Analytical solution for planning problem

N ≥ 1 homes. Constraints (1) and (2) active.

Fπ (π̃) ,
∫ T

0
1{π(t)≤π̃} dt, π∗ , inf{π̃ ∈ R+ : Fπ(π̃) = τ},

S ,
{

s ∈ [0, T] : π(s) < π∗
}

, u∗(t) =

{
1 ∀t ∈ S,

0 otherwise.

Optimal actions are synchronized



Analytical solution for planning problem

Constraints (1), (2) and (3) active.

Case I: large ∆ ⇔ ∃Θ0 s.t. ∀θ0 ∈ Θ0, θ∗123(t) = θ∗12(t)
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Understanding large ∆ condition (lin traj)

Suppose θ̇ =

{
+α

−β
. We have

2∆ > α (T− τ) ∨ βτ

m
∃ Θ0

·
=

[
L + [(α + β) τ − αT]+︸ ︷︷ ︸
= L for τ

T ∈ (0, α
α+β ]

> L for τ
T ∈ ( α

α+β , 1]

, U− α (T− τ)]︸ ︷︷ ︸
L≤ <U

If θ0 ∈ Θ0, then optimal policy =

{
OFF ∀ t ∈ (0, T− τ)

ON ∀ t ∈ [T− τ, T]
i.e., θ∗123(t) = θ∗12(t)



Understanding large ∆ condition (exp traj)

Suppose θ̇ = −α (θ(t)− θa)− βPu. We have

2∆ >

(
L (eατ − 1) + θa +

β

α
P
)
∨
(
(θa −U)

(
eα(T−τ) − 1

))
m

∃ Θ0
·
=

L∨
(

θa + eαT
(

L− 2θae−ατ +
β

α
Pe−ατ

))
, (U− θa) eα(T−τ) + θa︸ ︷︷ ︸

L≤ <U



If θ0 ∈ Θ0, then optimal policy =

{
OFF ∀ t ∈ (0, T− τ)

ON ∀ t ∈ [T− τ, T]
i.e., θ∗123(t) = θ∗12(t)



Analytical solution for planning problem

Constraints (1), (2) and (3) active.

Case II: θ
∗(i)
123 (t) = Ψ

L(i)0 ,U(i)
0

(
θ
∗(i)
12 (t)

)
, where ΨL,U (·) is

the two-sided Skorokhod map in [L, U]



Digression: Skorokhod map Ψ



Digression: Skorokhod map Ψ0,∞



Digression: Two-sided Skorokhod map
ΨL,U



Analytical solution for planning problem

Constraints (1), (2) and (3) active.

Case II: θ
∗(i)
123 (t) = Ψ

L(i)0 ,U(i)
0

(
θ
∗(i)
12 (t)

)
, where ΨL,U (·) is

the two-sided Skorokhod map in [L, U]



Summary

I A simple framework for optimal demand response.

I Designs optimal target consumption using forecast.

I Tracks the designed target consumption in real-time.

I LSE does not need to know individual states⇒ preserves
privacy.

Thank you
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Performance



Real time market + large commercial load

minimize
u(·) ∈ 1P(θ,πRT,θa)

E

[∫ T

0

{
πRTPu + γ (θ − θd)

2
}

dt
]

subject to

(1) θ̇(t) = −α (θ(t)− θa(t))− βPu(t),

[ODE for continuous state θ]

(2) m , (πRT, θa) ∼ Q = QπRT ⊗Qθa .

[finite state continuous time Markov chain for m]

State: (θ, m) ∈ R× |M|, where |M| = nπRTnθa

Find: optimal (indicator) feedback u∗(t) = 1P(θ,m) ∈ {0, 1}



HJB for controlled Markov jump process
Value function: Vi , V (θ, m = i), i = 1, 2, . . . , |M|

HJB:
0 = inf

u(·) ∈ 1P(θ,πRT,θa)

[
πRTPu + γ (θ − θd)

2 +
∂Vi

∂t

+
∂Vi

∂θ

{
− α (θ − θa)− βPu

}
+
|M|

∑
j=1

qij
(
Vj −Vi

)]
∀i = 1, 2, . . . , |M|

Involves optimization problem:

inf
u(·)

[
πRTPu +

∂Vi

∂θ

{
− α (θ − θa)− βPu

}]
︸ ︷︷ ︸

Γ(u)

⇒ If Γ(1)− Γ(0) = πRTP− βP
∂Vi

∂θ
< (>)0, then u∗ = 1(0)



What can we tell about the value function

Optimality condition: If
∂Vi

∂θ
> (<)

πRT(t)
β

, then u∗(t) = 1(0)

Notice:
Optimality condition is invariant under convexification
u ∈ {0, 1} 7→ u ∈ [0, 1]

Lemma: Vi[0,1]
is convex in θ.

Ongoing: code for value iteration, Q-learning.



Value iteration

Bellman equation:

Vk(i) = min
u∈{0,1}

[
ck (x = i, u) + ∑

j∈X
pij (u)Vk+1 (j)

]
, VT = zeros(n, 1).

Suppose we make 100 discretizations for θ ∈ [18, 22], and 40
discretizations for price πRT ∈ [50, 100]. Let’s make ambient
θa = 32 deg Celcius (constant). Then state space is a 100× 40
grid. In Bellman equation, n = 100× 40 = 4000, and the
indices i, j = 1, 2, . . . , n. The time index k runs backwards. So
k + 1 7→ k means a negative 15 minutes time-step. Take actual
final time T = 2 ∗ 3600. [pij] is a transition probability matrix of
size n× n = 4000× 4000, and is constructed as P = Pθ ⊗ PπRT ,
where Pθ is of size 100× 100, and PπRT is of size 40× 40. The
symbol ⊗ denotes kronecker product (MATLAB kron).


