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Chapter 1

Graphs
1.1 What is a graph?

A graph is a diagram which depicts the relationship between two or
more variables and can be expressed in various ways. The variables are
representing using the notion of points, vertices or nodes. The relationship
between each of these nodes are represented as lines, branches or links, which
are formally known as edges, that connect each point to its corresponding
pair. In mathematical notation, a graph is denoted as G = (V,E) in which
E is the set containing the edges and V is the set containing the nodes. One
thing to note is that edges create relationships amongst all nodes in a graph,
which is called an adjacency relation. This adjacency relation is quantified
by a square matrix known as an adjacency matrix. In an adjacency matrix,
the relation between each node is indicated by whether or not an edge exists
between two nodes. We will be focusing on two types of graphs: directed
and weighted graphs.

1.2 Directed Graph

Edges in a graph may have directions. In particular, when a direction is
specified between any two nodes, we refer to the graph as a directed graph.
A directed graph and an edge, known as an arc in this case, are denoted
by [Gui] as ordered pairs of the form G = (V,E) as well as (b, a) or (a, b)
respectively, where a, b are nodes. Each arc is distinct going from node a
to b and vice versa, shown in Figure 1.1. Additionally, if a directed graph
does not contain any self-loops nor multiple arcs, then the graph is simple.
Next we can define a walk in a directed graph to be a sequence of the form
n1, e1, ..., nm−1, em−1 thus ek = (nj , nj+1), and a walk is closed given that
n1 = nk. Using this idea of a walk, the definition of a path can be understood
as a walk through distinct nodes.

1.2.1 Adjacency Matrix of a Directed Graph

In a directed graph, an adjacency matrix A is a square matrix such that
each element of the square matrix consists of 0 if an edge does not exist
between two nodes or 1 if an edge does exist. This specific adjacency matrix
often exhibits zeros along the diagonal as the nature of the directed graph
does not allow for self-loops nor multiple arcs. These are characteristics of
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Figure 1.1: Here we have a graph, from [Com06], with four nodes or vertices
labeled as 1, 2, 3, 4. The directed edges between the vertices are shown too.

a simple finite directed graph. This adjacency matrix can be interpreted
in two different ways: (1) Each element Aab > 0 designates an edge from
nodes a to b or (2) each element Aab > 0 designates an edge from nodes b to
a. The first interpretation is often referenced and utilized widely in graph
theory, whereas the second interpretation is often used in understanding
graphs related to, for instance, linear dynamical systems.

1.2.2 Network and Flow

A network is a type of directed graph which contains a distinct origin
o and a distinct destination d, where every arc e has a capacity such that
c(e) > 0. Networks are often used in visualizing settings such as transporta-
tion of goods across a physical network, as well as transportation of data
through a digital network. We define the flow in a network to be a function,
g : c(e) → R, where g(e) ∈ [0, c(e)] ∀e, thus for every node that is not the
origin nor the destination observe∑

e∈E−
n

g(e) =
∑
e∈E+

n

g(e),

where E+
n and E−n express the sets of arcs (a, b) and (b, a) respectively.

1.3 Weighted Graph

A weighted graph is defined as a graph that has specific values associated
with the edges. A weighted graph can also be considered a network in that
the edge weights can provide meaningful information over that network.
This type of graph, as depicted in Figure 1.2, is often associated with notable
problems such as the travelling salesman problem and the minimum path
length problem.

1.4 Centrality Measure

Centrality measures quantify the relative importance of nodes in a graph.
This can be expressed as a real-valued function on the nodes of a network
such that the measurement will rank each essential node. Of course there
are a few notable centrality measures, outlined by [Eat13], which are of
importance when mentioning directed graphs.
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Figure 1.2: Here we have a weighted graph, from [Aca], with five nodes or
vertices labeled as 0, 1, 2, 3, 4. This graph has values assigned to its edges,
which are denoted as weights.

1.4.1 Degree Centrality

Degree centrality is the number of links a certain node has. Degree
may refer to information, risks, and numerous other factors. In terms of a
directed graph, there exists two types of degree measures called indegree and
outdegree. Indegree represents the amount of links passing into a node, while
outdegree represents amount of links pointing towards other nodes. Indegree
and outdegree can be expressed as positive and negative characteristics in
relation to the number of links pointing towards a single node and directed
outwards to other nodes. Let n be a node on a network such that its degree
centrality is given to be CD(n) = deg(n). We define the node with maximum
centrality to be n∗ and S = (Z,U) be the |Z|-node network which maximizes

F =

|Z|∑
i=1

CD(z∗)− CD(zi),

where z∗ denotes the node with maximum centrality in S. In terms of
expressing degree centralization,

CD(G) =

∑|V |
i=1CD(n∗)− CD(ni)∑|Z|
i=1CD(z∗)− CD(zi)

.

Referring back to Figure 1.2, we can work out a simple example of degree
centrality on a weighted directed graph. We can construct an adjacency
matrix of the form

A =


0 1 2 1 1
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
0 0 2 1 0

 ,

and multiply a column vector of ones to obtain the total number of links
each node has, which can be written as

0 1 0 1 1
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0




1
1
1
1
1

 =


3
2
0
1
1

 .
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Thus we find that node 0 has the highest degree centrality measure of 3.
Even though node 0 has a high number of total links, this does not tell us
anything about the information on the edges.

1.4.2 Closeness Centrality

In a graph or network where every node is connected (meaning that
there exists at least one directed path or sequence of arrows), we define the
closeness of a node to be the average minimum path length from a single
node or central node to all other nodes in a graph. This closeness can be
defined in the following way,

C(a) =
1∑

b d(b, a)
,

where a, b are nodes of a graph and d(b, a) represents the distance between
the nodes a and b. We can recall Figure 1.2 to work out a simple example
of closeness centrality on a weighted directed graph. Lets construct an
adjacency matrix of the form

A =


0 1 2 1 1
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
0 0 2 1 0

 .

We can take the sum of each row to obtain the total minimum path distance,
which can be written as

0 1 2 1 1
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
0 0 2 1 0




1
1
1
1
1

 =


1 + 2 + 1 + 1

1 + 1
0
1

2 + 1

 =


5
2
0
1
3

 .

Thus, the node with the highest closeness centrality is node 0 with a value
of 5. Although node 0 may be the closest to most nodes in the graph, this
does not provide insight to the information on the edges or the pairwise
interactions between the nodes.

1.4.3 Betweenness Centrality

The betweenness centrality enumerates the amount of times a node be-
comes a “bridge” along a path with minimum length between two nodes.
For example, if a minimum path between two nodes was picked randomly
which had a set of nodes with high probability of occurrence, then these set
of nodes would be considered to have high betweenness. We can compute
this centrality measure by finding the minimum path between two nodes,
then compute the fraction of minimum paths which pass through a certain
node of interest, and finally we take the sum of these fractional amounts. Let
pab denote every minimum path from nodes a to b and let pab(n) represent
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the amount of minimum paths from the total which actually pass through
a specific node n, therefore we obtain

CB(n) =
∑
n∈N

pab(n)

pab
, n 6= a 6= b.

We can use Figure 1.2 to figure out the betweenness centrality, so observe

CB(0) = 0, CB(2) = 0, and CB(4) = 0,

since there does not exist pairs of nodes which connect to the above nodes
as “bridges”. Next, we can calculate the betweenness measure for node 1, 3
and 4:

CB(1) =
p02(1)

p02
+
p03(1)

p03
+
p04(1)

p04
=

1

2
+

0

1
+

0

1
=

1

2
,

CB(3) =
p02(3)

p02
+
p04(3)

p04
+
p12(3)

p12
+
p42(3)

p42
=

1

2
+

0

1
+

0

1
+

1

1
=

3

2
.

Therefore, node 3 has the highest betweenness centrality measure of 3/2.
Even though node 3 may be the most common “bridge”, this centrality
measure does not utilize the weights on the edges. Similar to the previous
centrality measures, this example does not give us additional details about
the edges of the graph. This is the primary reason that motivates the notions
of graph curvatures to understand this pairwise interaction between every
node, which will be explained in detail in the next chapter.
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Chapter 2

Graph Curvature
2.1 What are curvatures in a graph?

We have discussed a bit about the ideas of graphs, nodes and edges, but
now we can move into a topic that dives deep into the geometry of graphs
and networks. Specifically, we will focus on the curvature of a graph.

The idea of a curvature is intuitive for a smooth surface. Suppose there
are two paths on a smooth surface that are parallel to one another. For a
surface with positive curvature, the two paths become closer to each other.
Whereas if the surface had negative curvature, the paths would go further
away. In Figure 2.1, we can visualize the shapes of these positive and nega-
tive curvatures. It turns out this idea of curvature can be generalized from
smooth surfaces to discrete structures such as graphs. Next, we explain
different notions of curvature for a graph as presented in [Oll13].

Figure 2.1: The left graph depicts positive curvature, the middle graph
depicts negative curvature and the right graph is for zero curvature.

2.1.1 Sectional Curvature

Let (X, d) be a Riemannian manifold. Suppose v and wx are two unit-
length tangent vectors at a certain point x ∈ X with ε, δ > 0. Let y be the
endpoint of δv and wy be obtained by parallel transport of wx starting from
point x to point y. Therefore, as (ε, δ) goes to 0, we have

d
(
expx(εwx), expy(εwy)

)
= δ

(
1− 1

2

(
εK(v, w) +O(ε3 + ε2δ)

))
.

This produces the sectional curvature at point x in the directions v and w,
denoted as K(v, w). Sectional curvature is dependent on two tangent vec-

7



tors, whereas Ricci curvature, introduced next, depends on a single tangent
vector. This is achieved by averaging K(v, w) across every directions w.

2.1.2 Ricci Curvature

Let us define x as a point in N -dimensional Riemannian manifold, and
a unit tangent vector v at the point x. We can express the Ricci curvature
along v, Ric(v), as the product of the average of K(v, w) and N , which the
average is taken over w running over the unit sphere in the tangent space
TxX. In this expression, N is denoted as a scaling factor and it originates
from the usual definition of Ricci curvature as the trace of a linear map.
Although this does not result in the average over a unit sphere, this does turn
into a sum over some basis. Utilizing the previous statement for sectional
curvature, we can also show that the average distance between two balls is

W = δ

(
1− ε2

2(n+ 2)
Ric(v) +O(ε3 + ε2δ)

)
,

which can be written out further to represent Ric(v),

W

δ
= 1− cRic(v),where c is a constant =⇒ Ric(v) = 1− W

δ
.

Curvatures refer to the distribution of the edge weights, so we can use this
to define Ricci Curvature for graphs. Suppose we have a graph G = (V,E),
where V is the set of nodes and E is the set of edges. Let µi(j), µj(k) be
probability vectors such that

µi(j) =
wij∑

j∈N(i)wij
and µj(k) =

wjk∑
k∈N(j)wjk

,

where w represents the weights along the edges and N(i) := {j ∈ V | eij ∈
E} is the neighborhood of node i (same definition for N(j)). This defines a
set of probability measures M = {µ1, µ2, µ3, ..., µm}, where n = |V | is the
number of nodes of the graph. Therefore for any µi ∈M, µi is a probability
measure in the neighborhood of node i, N(i).

2.2 Ricci Curvature Computation

Let us expand upon the previous paragraph where we defined Ricci Cur-
vature. Let κ(i, j) be the curvature between a node x and a node y (for
an edge xy). Let W1(µi, µj) denote the 1-Wasserstein distance explained in
[Vil03] (also known as Earth-mover distance). Let d(i, j) denote the hop
distance or combinatorial graph distance, where if nodes i and j are con-
nected then d(i, j) 6= 0, otherwise d(i, j) = 0. Therefore, we find that our
computation involves solving

κ(i, j) = 1− W1(µi, µj)

d(i, j)
.
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The 1-Wasserstein distance W1(µi, µj) can be written as a Linear Program-
ming (LP) problem

W1(µi, µj) = min
µij(x,y)

∑
x∈N(i),y∈N(j)

d(x, y)µij(x, y)

subject to µij(x, y) ≥ 0,∑
y∈N(j)

µij(x, y) = µi(x),

∑
x∈N(i)

µij(x, y) = µj(y).

In a MATLAB program, we implemented the curvature computation for
a weighted adjacency matrix on a directed graph. We used the optimization
parser CVX (http://cvxr.com/cvx/) to solve the LP mentioned above.
Next, we explain the computational procedure using a simple weighted ad-
jacency matrix.

Suppose we have 4 nodes, where the weighted adjacency matrix is

A =


0 0 0 0

0.9157 0 0.7577 0
0.7922 0.8491 0 0.7060
0.9595 0.9340 0 0

 ,

then we can insert this weighted adjacency matrix into the function G =

digraph(A), which then creates a weighted directed graph, as shown in
Figure 2.2, that we can plot.

With the weighted directed graph created, the next step is to find the
out-neighborhood for each node in the graph. This consists of assigning a
vector for the out-neighborhood nodes (N{i} = neighbor_nid), the associ-
ated weight of the edges for each node to the out-neighbor ({i} = G.Edges.

Weight(neighbor_eid)) and finally the probability distribution on out-
neighborhood for each node (mu{i} = w{i}/sum(w{i}). Next, we find the
shortest path distance matrix for every pair of nodes in G, which can be
determined by using a convenient MATLAB function d = distances(G).

Before proceeding to the computation, the variables of 1-Wasserstein
distance as well as Ricci curvature are initialized. Next, we determine what
nodes are reachable from node i and check to see if there is at the least
one node which is reachable from node i. If so, then the code moves for-
ward into a for loop that contains an if-condition which verifies that the
jth reachable node from node i has at least one single-hop neighbor. Once
we have every out-neighborhood of each node in the graph and the reach-
able nodes from each node, we can construct the neighborhood distance
(C = d(N{i},N{reachable_nodes{i}(j)})). The script (EMD Primal.m),
which is provided the neighborhood distances and both probability distri-
butions of node i including the j reachable node from node i, calculates using
CVX, the 1-Wasserstein distance (OneWasserstein(i,reachable_nodes{i}
(j)) = EMD_Primal(C, mu{i}, mu{reachable_nodes{i}(j)})). With all
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Figure 2.2: This is our example of the weighted directed graph with 4 nodes,
given a 4× 4 adjacency matrix with predetermined weights.

the components we have thus far, we are able to proceed to the curvature
computation which will yield a matrix κ consisting of curvature values,

κ =


und und und und
und und −∞ −∞
und 0.2588 und 0.5960
und 0.5930 −∞ und

 ,

where curvatures that are undefined are denoted as und.
In the above matrix, we find that there are curvatures which are unde-

fined. The curvatures on the diagonal of κ are undefined since there are no
self-loops in the graph, thus there either does not exist any reachable nodes
from itself or any single-hop neighbors from each node to itself. Similarly,
we find that there either does not exist any reachable nodes from node 1
or nodes 2, 3 and 4 from node 1 do not have any single-hop neighbors (cur-
vatures are also undefined from nodes 2, 3, and 4 to node 1). This is due
to the fact that node 1 as an origin or destination is not directed towards
any other node in the graph. We also observe that the above matrix ex-
hibits curvatures of −∞ since these inter-ball vertex hop distances are not
reachable, implying that the respective entries in the distance matrix are
set to +∞. The entries of the distance matrix become the coefficients of
the linear objective function in the LP, therefore the problem outputs +∞,
which proves that the problem is infeasible for these 3 entries (i.e. κ(i, j) =
1− (W1(µi, µj)/d(i, j)) , where W1(µi, µj) = +∞, thus κ(i, j) = −∞).
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Conclusion

In this paper, we discussed the notion of curvature on a graph to un-
derstand the pairwise interaction between nodes. This is motivated by the
fact that traditional graphs typically utilize centrality measures, which do
not capture these pairwise interactions and the idea that curvatures can
be generalized from smooth surfaces to discrete structures such as graphs.
We utilized Ricci curvature and formulated the 1-Wasserstein distance as
an LP to demonstrate the curvature computation for a directed weighted
graph. As a result, these curvature values can illustrate the essential infor-
mation between nodes that normally would not translate over in centrality
measures.

A possible scenario in which this method would be useful in is the ap-
plication to COVID-19 data. Specifically analyzing the transmission of the
virus across all counties in the United States, where automobile transporta-
tion is heavily relied on. We can visualize this on a directed weighted graph
by letting the nodes denote the counties, where the nodes contain the num-
ber of COVID-19 cases. Then, let the edges of the graph denote the number
of people travelling between counties on a daily basis. By performing the
curvature computations, we can describe the meanings of positive and neg-
ative curvatures in relation to this data. For spaces with positive curvature,
this means that there are small amounts of foot traffic between the counties
implying less spreads of the virus. For spaces with negative curvature, this
means that there are significant amounts of foot traffic between the counties
implying larger spreads of the virus. Thus, this information will help in
making decisions to optimally intervene in the spread of COVID-19.
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