Abhishek Halder

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Control Objectives

Dept. of Applied Mathematics University of California, Santa Cruz

©Abhishek Halder

Recap: state space

Set in which the collection of state variables belong to

We saw examples: interval, infinite real plane, infinitely long cylinder, torus/bagel/doughnut

Example: state space for spring pendulum

Process state variables: $(\theta, \omega, \ell, v) = (angle, angular velocity, length, rate of change of length)$

Fixed points/equilibria:
$$\begin{pmatrix} 0,0,\ell_0 - \frac{mg}{k},0 \end{pmatrix}$$
, $\begin{pmatrix} \ell_0 & -\frac{mg}{k},0 \end{pmatrix}$, $\begin{pmatrix} \ell_0 & \ell_0 & \ell_0 \end{pmatrix}$ is the rest

State space:

in (rad, rad/s, ft, ft/s) at time *t*

 $\left(\pi, 0, \mathcal{E}_0 - \frac{mg}{k}, 0\right)$

length

Example: state space for spring pendulum

Process state variables: $(\theta, \omega, \ell, v) = (angle, angular velocity, length, rate of change of length)$

Fixed points/equilibria:
$$\begin{pmatrix} 0,0,\ell_0 - \frac{mg}{k},0 \end{pmatrix}$$
, $\begin{pmatrix} \ell_0 & -\frac{mg}{k},0 \end{pmatrix}$, $\begin{pmatrix} \ell_0 & \ell_0 & \ell_0 \end{pmatrix}$ is the rest

State space: $[-\pi, \pi] \times \mathbb{R}^3$

in (rad, rad/s, ft, ft/s) at time *t*

 $\left(\pi, 0, \mathcal{C}_0 - \frac{mg}{k}, 0\right)$

length

Example: state space for wheeled mobile robot

Process state variables: $(x_1, x_2, \theta) =$ (horizontal position, vertical position, heading angle) in (ft, ft, rad) at time *t*

State space:

Example: state space for wheeled mobile robot

Process state variables: $(x_1, x_2, \theta) =$ (horizontal position, vertical position, heading angle) in (ft, ft, rad) at time *t*

State space: $\mathbb{R}^2 \times [0, 2\pi)$

Control objectives

Controller is an **algorithm**

Designing this algorithm is called **control design** or **control synthesis**

Different objectives lead to different types of algorithms

Examples of different objectives: regulation, tracking

Regulation: finite vs infinite horizon

t

Tracking: finite vs infinite horizon

Fill in the blanks: regulate or track?

Artificial pancreas: ______ blood glucose concentration

Car cruise control: _____ car speed to the speed limit

Wheeled mobile robot: ________ a given desired path avoiding obstacles

Bipedal walking robot: ________ state variables to walk along a straight line

Different subdisciplines for different control design philosophies

Stochastic control: optimal control with noise and statistical uncertainties

Adaptive control: optimal control with unknown dynamics: learning + control

Often mix these: e.g., stochastic + adaptive, etc.

- **Classical linear/nonlinear control:** regulate or track signals, typically concerns with $t \rightarrow \infty$
- **Optimal control:** optimization + control --> regulate or track while minimizing some loss / cost

Frequent intersection with other disciplines

Dynamic games: game theory + optimal control

Machine learning: learning for control, control for learning

Control of networked systems: graph theory + control