Linear Feedback

Abhishek Halder

Dept. of Applied Mathematics University of California, Santa Cruz

ahalder@ucsc.edu

All rights reserved. These slides cannot be shared, modified or distributed without instructor's permission.

Recap: control objectives

Controller is an algorithm

Designing control algorithm: what and how

What should the control algorithm do: regulate? track?

Today: **How** to design a regulator (controller that achieves regulation) or tracker (controller that achieves tracking)?

Recap: from our block diagrams

Recap: from our block diagram

Suppose the feedback is only **one** output y AND we have only **one** control u

Control is proportional to error

Then control
$$u(t) = \underbrace{k}_{\text{constant}} \underbrace{\underbrace{y_d(t)}_{\text{desired output}} - \underbrace{y(t)}_{\text{measured output}}}_{\text{error at time } t}$$

This is same as the proportional control your learnt in the robotics course

Mathematically, this is same saying "control is a linear function" of the error

Suppose the feedback is only **one** output y AND we have only **one** control u

Control is **proportional** to error

$$u(t) = \underbrace{k}_{\text{constant}} \left(\underbrace{y_d(t)}_{\text{desired output}} - \underbrace{y(t)}_{\text{measured output}} \right)$$

more (less) error ---> more (less) corrective action

This is same as the proportional control your learnt in the robotics course

error at time t

Mathematically, this is same saying "control is a linear function" of the error

Suppose the feedback comprises of **multiple** (for example, two) output signals y_1, y_2 AND we have only **one** control u

Control is **linear** function of the errors

Then control

$$u(t) = \underbrace{k_1}_{\text{constant}} \underbrace{\left(\underbrace{y_{1d}(t)}_{\text{desired first output}} - \underbrace{y_1(t)}_{\text{measured first output}} \right) + \underbrace{k_2}_{\text{constant}} \underbrace{\left(\underbrace{y_{2d}(t)}_{\text{desired second output}} - \underbrace{y_2(t)}_{\text{desired second output}} \right)}_{\text{error in first output at time } t}$$

Designing the controller reduces to finding the constants / gains k_1, k_2

Suppose the feedback comprises of **multiple** (for example, two) output signals y_1, y_2 AND we have **multiple** (for example, two) controls u_1, u_2

Then controls

Controls are linear functions of errors

Suppose the feedback comprises of **multiple** (for example, two) output signals y_1, y_2 AND we have **multiple** (for example, two) controls u_1, u_2

Then controls

Controls are linear functions of errors

$$u_{1}(t) = \underbrace{k_{11}}_{\text{constant}} \underbrace{\left(\underbrace{y_{1d}(t)}_{\text{desired first output}} - \underbrace{y_{1}(t)}_{\text{measured first output}} \right)}_{\text{error in first output at time } t} + \underbrace{k_{12}}_{\text{constant}} \underbrace{\left(\underbrace{y_{2d}(t)}_{\text{desired second output}} - \underbrace{y_{2}(t)}_{\text{measured second output}} \right)}_{\text{error in second output at time } t}$$

$$u_{2}(t) = \underbrace{k_{21}}_{\text{constant}} \left(\underbrace{y_{1d}(t)}_{\text{desired first output}} - \underbrace{y_{1}(t)}_{\text{measured first output}} \right) + \underbrace{k_{22}}_{\text{constant}} \left(\underbrace{y_{2d}(t)}_{\text{desired second output}} - \underbrace{y_{2}(t)}_{\text{measured second output}} \right)$$

error in first output at time t

error in second output at time *t*

Recap: wheeled mobile robot from Lecture 5

MATLAB exercise: design a linear feedback controller for tracking

Ignore noise: assume w(t) = 0, $v_1(t) = 0$, $v_2(t) = 0$

Choose some meaningful initial condition

Choose some meaningful desired path

Use for loop over the discrete time index

Experiment with different choices of control gains