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Abstract

We compare computational cost and accuracy between two different approaches of dispersion analysis.
One is the conventional Monte Carlo method and the other being the Perron-Frobenius operator approach,
that directly propagates the joint probability density function using Liouville equation. It is shown that
with same computational budget, Perron-Frobenius operator approach rewards better accuracy than Monte-
Carlo based dispersion analysis. In particular, we show that propagation of uncertainty through the Perron-
Frobenius operator is exact in the sense that the joint density computation incurs no more than the path
integration error. On contrary, the rate of approximation from Monte Carlo simulation, has fractional decay.
We also establish performance guarantees for approximating marginals from the joint density and obtain
the optimal approximation algorithm for piecewise constant approximating class. These results justify why
Perron-Frobenius operator outperforms Monte Carlo, as observed numerically in uncertainty propagation
setting [Halder and Bhattacharya, 2011] and in nonlinear filtering setting [Dutta and Bhattacharya, 2011].

1 Introduction

Dispersion analysis refers to nonparametric uncertainty quantification in dynamical systems. With the increasing
complexity of dynamical systems being studied in science and engineering, methods for quantification and system-
atic propagation of uncertainty, have gained considerable research interest for guaranteeing robust performance
in safety critical operations. Some representative applications include risk assessment in the atmospheric trans-
port of chemical, biological, radiological and nuclear (CBRN) hazards [Terejanu et. al., 2007], weather forecasting
[Poroseva et. al., 2006], planetary landing of rovers [Knocke et. al., 2004], uncertainty evolution in fluids [Galbally
et. al., 2010; Pettersson et. al., 2009] and materials [Ghanem and Spanos, 2003; Greene et. al., 2011]. The most
popular way of doing this is Monte Carlo (MC) simulation, where one simulates the dynamics with randomly
sampled initial conditions and constructs a histogram at each snapshot of interest. One may then look at the
constructed static histogram as an approximation of the underlying probability density function (PDF). However,
the difficulty with this approach is that it’s computationally too expensive for simulating large-scale systems, typ-
ically those with nonlinear dynamics involving uncertainties in many states and parameters. Another potential
concern is that the method of constructing histogram as a post-processing step, is a piecewise constant approxi-
mation that suffers from ‘curse of dimensionality’ [Bellman, 1957]. Hence in addition to runtime complexity, the
accuracy of histogram approximation exacerbates with the increasing dimensionality of the system.

With the emergence of uncertainty quantification as a significant thread of research in scientific computing,
many alternative methods have been proposed for dispersion analysis. One prominent candidate is the polyno-
mial chaos (PC) method [Soize and Ghanem, 2004] where one derives a set of deterministic ordinary differential
equations (ODEs) using either Galerkin projection [Spanos and Ghanem, 1989] or stochastic collocation [Xiu and
Hesthaven, 2005]. Although PC have been implemented successfully in many engineering applications [Pettit,
2004; Mathelin et. al., 2005, Prabhakar et. al., 2010; Dutta and Bhattacharya, 2010], one bottleneck is that
deriving the deterministic ODEs from PC expansions is difficult for generic nonlinear dynamical systems [Debuss-
chere et. al., 2004]. Furthermore, the resulting set of deterministic coupled nonlinear ODEs need to be solved in a
higher dimensional state space. For example, if the original state space dimension is d (i.e. the dynamics is given
by d first order ODEs) and each state is approximated through N -term approximation via PC expansion, then we
must solve total Nd ODEs to obtain the PC coefficients. To ensure good convergence, N need to be large. Hence
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for large d, the problem becomes intractable for simulation. Moreover, the finite dimensional approximation of
the probability space degrades the computational performance if long term statistics is desired.

Other than PC, frameworks for uncertainty quantification include concentration-of-measure inequalities [Lucas
et. al., 2008], statistical linearization [Roberts and Spanos, 2003] and moment closure methods [Bergman et. al.,
1994]. The first only provides a margin of uncertainty, the applicability of the second depends on the nonlinearity
of the dynamics and parametric methods like moment closure lack accuracy compared to nonparametric methods
which compute evolution of the entire PDF instead of first few moments of it. Due to the lack of availability
of nonparametric methods which can guarantee accuracy in high-dimensional nonlinear setting, coupled with its
ease of implementation, MC is still preferred in many industry scale and mission specific simulations [Powell et.
al., 2000; Balaram et. al., 2002].

Borrowing ideas from statistical physics, in [Halder and Bhattacharya, 2011] the authors have shown that the
nonparametric propagation of uncertainty can be computed exactly by solving Liouville partial differential equa-
tion associated with the Perron-Frobenius (PF) operator [Lasota and Mackey, 1994]. The proposed technique is
easy to implement through method-of-characteristics (MOC) and hence from a practitioner’s perspective, existing
MC codes can quickly transition to the Perron-Frobenius operator formalism. Further, since each characteristic
can be computed independent of the other, the MOC implementation is suitable for parallelization. The formula-
tion was incorporated in NASA Jet Propulsion Laboratory’s Dynamics Simulator for Entry, Descent and Surface
Landing (DESENDS) platform [Balaram et. al., 2010] for dispersion analysis in planetary exploration.

Although it’s apparent that an exact computation of the spatio-temporal evolution of the PDF based on
Perron-Frobenius operator formulation outperforms an approximate computation of the same based on MC his-
togram, as evidenced by the numerical results in [Halder and Bhattacharya, 2011], one may still ask the margin
of accuracy leveraged by the proposed method compared to MC. Further, no rigorous results were known on
whether the MOC computation overhead affects the runtime complexity for calculating exact PDF compared to
MC based histogram construction. The purpose of this article is to show that with same computational budget,
the PF operator formalism enables exact computation while MC compromises with the accuracy.

1.1 Main results

In this section, we outline the structure of this paper and clearly identify its contributions. To compare computa-
tional performance between MC and the proposed method, we analyze each step of these frameworks. In the first
step, a prescribed initial joint PDF supported over the space of initial conditions and parameters, is sampled. This
is described in section 3. Our treatment here is mostly expository to demonstrate how ideas from different fields
can be brought together in the context of this problem. Section 3.1 shows how the sampling strategy depends
on the target density. For uniform sampling, accuracy of quasi-Monte Carlo samplers can be characterized in
terms of number of samples and number of dimensions. For others, in high dimensions, Markov Chain Monte
Carlo samplers guarantee asymptotic convergence. To characterize runtime complexity (section 3.2), an analysis
of ‘burn-in period’ is required that till date can be done for few restrictive cases. For uniform samplers, however,
we provide a runtime summary in Table 2. Section 4 concentrates on the second step, i.e. propagation of joint
PDF. Section 4.1 compares accuracy and section 4.2 deals with runtime complexity. Finally, in section 5, we
analyze the performance of computing marginal PDF of interest that can be seen as a post-processing. Accuracy
and runtime are compared in section 5.1 and 5.2 respectively. It can be noted that unlike propagation of joint
PDF, marginal PDF computation is an approximation algorithm for both MC and Perron-Frobenius operator
formalism. As a result, part of section 4.1 and all of section 5.1, draw heavily on the theory of constructive
approximation to guarantee necessary and sufficient conditions on accuracy. This pursuit connects the rate of
convergence of the approximation algorithms with interpolation between function spaces and can be juxtaposed
with more traditional analysis in nonparametric density estimation exercised by the statistics community. In
the latter, only sufficiency is guaranteed under conservative assumptions on the density. We also improve the
marginal approximation algorithm of [Halder and Bhattacharya, 2011] by deriving the optimal piecewise constant
marginal approximation in the Perron-Frobenius operator framework. To help the readers, section 5.1.1 and the
two appendices supplement the necessary background. The comparative performance guarantees established in
this work are summarized in Table 1.

2 Notations

Most notations are standard. The set of whole numbers is denoted by N0 = N⋃{0}, where N stands for the set of
natural numbers. Rd is the real Euclidean space in d dimensions. The symbol ∣ . ∣ denotes magnitude that returns
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Table 1: Summary of results
Accuracya Runtimeb

MC PF MC PF

Sampling initial PDF

⎧
⎪⎪
⎨
⎪⎪
⎩

For QMC samplers, Theorem 1

For MCMC samplers, asymptotic convergence

⎧
⎪⎪
⎨
⎪⎪
⎩

Tgen = O (ξ (ν, d)) , in general

For QMC samplers, Table 2

Uncertainty propagation O (N−α/d
) , 0 < α < 1

⎧
⎪⎪
⎨
⎪⎪
⎩

zero

O ((∆t)q)

⎧
⎪⎪
⎨
⎪⎪
⎩

Tdyn +O (νd)

= O (ν ζ (d)) +O (νd)

⎧
⎪⎪
⎨
⎪⎪
⎩

Tdyn +O (νd)

= O (ν ζ (d)) +O (νd)

Marginal approximation O (N−α/m
) , 0 < α < 1 O (N−α/m

) , 0 < α < 1 O (νd−m+1
) O (ν)

aN = number of tiling partitions of the domain, d = dimension of the support of joint PDF, m = dimension of the support of
marginal PDF, ∆t ∶= max

k=1,⋯,K
{∆tk} = largest step-size for a variable step integrator, q = order of the integrator

bν = number of samples, ζ (d) = time complexity for propagating one sample in d dimensions

absolute value for scalar argument and Euclidean length for vector argument. ∥ . ∥X(Ω) is the norm w.r.t. the
Banach space X over domain Ω ⊂ Rd while ∣ . ∣Y (Ω) stands for the seminorm. By A ↪ B, we mean the function
space A is embedded in the function space B. The symbols ≲, ≳ denote weak inequality up to a constant. ⌈α⌉
returns the smallest integer bigger or equal to α; ⌊α⌋ returns the largest integer smaller or equal to α. The
big O notation is often used to describe the order of numerical accuracy or that of computational complexity of
an algorithm. By the notation f (n) ∈ O (g (n)), we mean ∃ k > 0 and n0, such that ∣f (n) ∣⩽ kg (n), ∀ n > n0.
Asymptotically, ∣f (n) ∣⩽ kg (n) for some positive k. # (S) denotes cardinality of the set S. The divergence of a
vector field is denoted by div (.). Also, the indicator function is denoted by χ and the symbol Vol (.) returns the
volume or associated Lebesgue measure.

3 Sampling of initial distribution

To describe how uncertainties in initial conditions and parameters evolve in a dynamical system, we need to
quantify the uncertainty in the combined space of initial conditions and parameters. In this paper, such a
quantification is done in weak distributional sense. Assuming the underlying probability measure to be absolutely
continuous, the initial distribution is specified as a PDF supported over the initial conditions and parameters.
Then the question arises, how to generate a user-specified number of samples from such prescribed initial joint
PDF?

An important observation here is that the users’ freedom to specify any number of multidimensional samples
precludes grid-based approach. Algorithmically, keeping number of samples independent of dimensions, saves
the sampling step from ‘curse of dimensionality’ [Bellman, 1957]. However, to ensure the quality of samples
(i.e. how accurately do the samples represent the original specified distribution), dimensions do come into play.
Some explicit guarantees can be given depending on the algorithm and the underlying distribution to sample, as
expatiated below.

3.1 Accuracy

If the initial density is jointly uniform, then multidimensional Halton sequence [Halton, 1960] provides a deter-
ministic method to generate a prescribed number of samples. Since the construction is based on a deterministic
algorithm (as opposed to randomized algorithm), it’s often called a quasi Monte Carlo (QMC) method of sample
generation. The Halton sequence is a multidimensional extension of van der Corput sequence with respect to base
b, denoted by Vb, whose nth term is given by

Vb (n) ∶=
∞
∑
r=0

ar (n)
br+1

, n ∈ N, (1)
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where ar (n) is the rth digit of the b-adic expansion of

n − 1 =
∞
∑
r=0

ar (n) br. (2)

The nth term of the Halton sequence in unit hypercube [0,1]d is defined as the d-tuple

Hn ∶= (Vb1 (n) ,⋯,Vbd (n)) , (3)

where the bjs are pairwise coprime, for j = 1,⋯, d. Accuracy of the generated Halton points is quantified through
the notion of discrepancy, denoted by Dν (Sd) ∈ (0,1), that intuitively measures the amount of irregularity in
the generated d-dimensional sample set of cardinality ν i.e. Sd ∶= {H1,⋯,Hν}. Since the samples of uniform
distribution are desired to be scattered evenly throughout the domain, lower discrepancy is better.

Definition 1. (Discrepancy and star discrepancy) Let F denote the nonempty family of subsets of [0,1]d.
The discrepancy Dν (Sd) of a sample set Sd of cardinality ν, is defined as

Dν (Sd) ∶= sup
F∈F

∣1
ν

ν

∑
i=1

χ (Hi ∈ F) −Vol (F)∣. (4)

If instead of F , we use G , the nonempty family of subsets of semi-open unit hypercube [0,1)d, then the above
defines star discrepancy D⋆

ν (Sd) as

D⋆
ν (Sd) ∶= sup

G∈G
∣1
ν

ν

∑
i=1

χ (Hi ∈ G) −Vol (G)∣. (5)

The following theorem ensures that the multidimensional Halton sequence, as defined in (3), is of low discrep-
ancy.

Theorem 1 (Niederreiter, 1992). ∀ ν ⩾ 1, D⋆
ν (Sd) <

d

ν
+ 1
ν

d

∏
j=1

(
bj − 1

2 log bj
log ν +

bj + 1
2

).

There are other low discrepancy sequences like Sobol, Faure and Niederreiter sequences [Niederreiter, 1992],
which suitably permute Halton sequences to lower the discrepancy for large d. If the initial joint density is other
than uniform, then the availability of a low discrepancy uniform random number generator still comes handy for
inverse transform sampling or other specialized methods [Devroye, 1986].

Unfortunately, sampling non-uniform density through transform techniques suffers from computational inef-
ficiency in high dimensions. Hence, to sample arbitrary initial PDF in high dimensions, one must resort to a
Markov Chain Monte Carlo (MCMC) sampler. The core idea behind MCMC is to create a Markov chain whose
stationary distribution is the one from where we want to sample. Two popular ways of doing this are Metropolis-
Hastings algorithm [Chib and Greenberg, 1995; Diaconis and Saloff-Coste, 1998; Liu, 2001] and Gibbs sampler
(also known as Glauber dynamics and heat-bath algorithm) [Glauber, 1963; Turčin, 1971; Diaconis et. al., 2008].
Since MCMC guarantees that the constructed Markov chain asymptotically converges to the desired density, to
adjudge the performance of MCMC, one can ask: how long must the chain be run to get sufficiently close to
the target density? This rate of convergence, often called ‘burn-in period’ in MCMC literature, quantifies the
performance of a sample generation algorithm. We describe it next.

3.2 Computational time

Although numerically implementing Metropolis-Hastings and Gibbs sampler are straightforward, deriving rigorous
bounds for burn-in period is a daunting task. In particular, sharp computable bounds are not available in general
setting. Hence two approaches of tackling this problem have evolved in the statistics community. One is the
practitioners’ approach, where instead of computing an upper bound for burn-in period, a convergence diagnostics
is performed to test whether the realized samples “seem to be stable” after “large enough” number of iterations.
Some widely used convergence diagnostics can be found in [Cowles and Carlin, 1996]. The advantage of these
diagnostics is that they often work in practice for any general setting. On the flip side, lack of theoretical rigor
may lead to a premature claim for convergence [Matthews, 1993] or introduce bias in the resulting estimates
[Cowles et. al., 1999].

The second approach strives to find a rigorous upper bound for the burn-in period. Here the distance between
the nth iterate of the Markov chain and the stationary target density is estimated in total variation norm. The
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idea is to upper bound this distance as a function of n, to answer how many steps are necessary to be ε close
to the target density. This thread of research is an ongoing pursuit. In our context of continuous state space,
most results [see section 3, Roberts and Rosenthal, 2004; Meyn and Tweedie, 2009] impose some restrictions on
the Markov chain (e.g. uniform ergodicity, geometric ergodicity etc.). Others rely on symmetry [see section 2,
Diaconis and Saloff-Coste, 1998] or geometric techniques [section 4, Diaconis and Saloff-Coste, 1998] for finite
state space.

Due to lack of practical and computable MCMC bounds in continuous state space, we simply denote the
time required to sample as Tgen = O (ξ (ν, d)), a function of ν and d. To make the comparison meaningful, we
propagate the uncertainty with same set of MCMC samples, for both MC and PF method. This precludes Tgen

from exponential dependence on d, i.e. grid-based curse of dimensionality. However, if the initial density is jointly
uniform, then the QMC samplers of section 3.1 are in force and runtime complexity results are known for them
(see Table 2).

Table 2: Computational speed of QMC samplers
Runtime complexity Tgen = O (ξ (ν, d)) for QMC sequences

Halton sequence O (d log ν) [Halton and Smith, 1964]

Faure sequence O (d(
log ν

log ηd
)

2

) [Fox, 1986] ηd is the first prime number ⩾ d

Sobol sequence O (d (log ν)2
) [Sobol, 1979] Sobol’s original implementation

Sobol sequence with XOR and O (d ⌈
logϑ

w
⌉) [Bratley and Fox, 1988] ϑ > ν is a user-specified upper bound,

assembly-like shift-and-count w is the computer word-length

Sobol sequence with XOR but O (d ⌈
logϑ

w
⌉ + log ν) [Fox, 1986]

without shift-and-count

4 Propagation of uncertainty

To determine the evolution of parametric and initial condition uncertainty, the joint density needs to be trans-
ported in the extended state space. Given the vector field in nonlinear state space form

ż = f (z, p) , z ∈ Rns , p ∈ Rnp , (6)

we define the augmented state space x ∶= [z p]T . Here ns and np denote the number of states and number of pa-
rameters, respectively. The dimension of the extended state space is n ∶= ns+np. Let the uncertainty in the initial
conditions (z0 ∶= z (t = 0)) and parameters (p), be quantified through the initial joint density ρ0 (x) ∶= ρ (x, t = 0).
In dispersion analysis, the question of interest is to study the spatio-temporal propagation of uncertainties in
Ω×(0,∞), Ω ∈ Rn, i.e. to compute ρ (x, t) ⩾ 0, where ∫

Ω
ρ (x, t) dx = 1 for almost every t ∈ (0,∞). This evolution

of probability density subject to the dynamics (6) is governed by the first order partial differential equation (PDE)

∂

∂t
ρ (x, t) +

ns

∑
i=1

∂

∂xi
(ρ (x, t)Fi (x)) = 0, (7)

known as the Liouville equation, where F (x) ∶ Rn → Rn, is the augmented dynamics [fns×1 0np×1]
T

. Equation
(7) can be seen as the transport equation associated with the PF operator [Lasota and Mackey, 1994], that advects
probability mass in the extended state space while keeping the total mass conserved.

It can be shown that (7) can be solved using MOC. In this approach, the trajectories of the augmented
dynamics ẋ = F (x), become the characteristic curves. Along these characteristics, the joint PDF value can be
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updated by solving the ODE initial value problem

d

dt
ρ (x, t) = −ρ (x, t)div (F (x)) , (8)

with ρ0 (x) ∶= ρ (x, t = 0), given. For deriving (8) from (7), refer [section II, Halder and Bhattacharya, 2011]. Some
illustrative examples can be found in the same reference showing (8) enables exact solution for ρ (x, t) through
direct integration.

This approach of exactly computing ρ (x, t) is in sharp contrast with the traditional MC where only samples
are propagated using the dynamics ẋ = F (x) and then joint PDF values are approximately constructed through
histogram. It’s obvious that with the same number of samples, MOC based PF solution for joint PDF will reward
better accuracy than MC. In section 4.1, we provide a quantitative estimate for the same. Section 4.2 assures
that runtime complexity is not compromised in this pursuit of numerical accuracy.

4.1 Accuracy

The main idea here is that constructing joint PDF through MC histogram is an approximate method (piecewise
constant approximation) while computing the same via PF operator based Liouville equation, is an exact method.
Except the truncation error of the integrator, for any generic nonlinear dynamics, the joint PDF weights updated
through MOC computation of the Liouville PDE, is exact at the sample sites. The finite sample computation of
MOC does not incur any loss of generality. To elicit this, consider a case where the user queries the instantaneous
joint PDF value at a location of the extended state space where none of the finite samples have landed. To
determine this value exactly, by back integrating the dynamics till t = 0, we can determine the initial condition
this sample would have come from. If the corresponding initial condition is found to lie outside the support of
the prescribed initial joint density, the joint PDF value at the query site is zero. Otherwise, the instantaneous
joint PDF value can be computed exactly by forward integrating the Liouville equation along the characteristic
curve for that single initial condition.

4.1.1 Numerical accuracy for computing joint PDF using MC histogram

The joint PDF from MC simulation is constructed by making a multivariate histogram. If the number of samples is
of the order of inverse of integration error for propagating each sample, then truncation error affects the accuracy
of MC histogram construction. For a reasonably higher order integrator with small step-size, the major source
of error is the piecewise constant approximation of the joint PDF via frequentist bin counting. This occurs as a
post-processing step. To keep things simple, we only consider the case for tiling histograms i.e. the partitioning of
the domain consists of disjoint union of hyper-rectangles. Even in this simple setting, the approximation may take
place in a linear (uniform tiling) or nonlinear (nonuniform tiling, e.g. adaptive) fashion. It section 5.1.2, we will
show that under mild assumptions, the true joint density lies in the smoothness space Bα1 (L1 (Ω)) ↪ Bα∞ (L1 (Ω)),
0 < α < 1. Here Ω ⊂ Rn, denotes the instantaneous domain of the MC samples, n ∶= ns + np being the dimension
of the extended state space. Such a knowledge about the underlying function that we are trying to approximate,
enables us to guarantee an optimal rate of approximation N−α/n, for uniform tiling of N buckets, using linear
approximation theory to be detailed in the sequel (see section 5.1.3). Since 0 < α < 1 and n ∈ N, for a fixed
dimension n, no grid refinement can make the error decay faster than O (N−1). For a fixed smoothness α ∈ (0,1),
such fractional decay of error aggravates further with the increase in dimension n. This result can not be improved
using nonlinear approximation (Appendix B).

4.1.2 Numerical accuracy for computing joint PDF using Liouville equation

MOC implementation of Liouville equation is an exact method to update the joint PDF weights along each
trajectory. Thus, for a given dynamics, if the ODE (8) can be solved analytically, then the total error to compute
joint PDF is zero. However, for most nonlinear dynamics, (8) would require numerical integration and the
joint PDF computation would be as accurate as the truncation error of the integrator (modulo round off error).
A popular choice is the fourth order Runge-Kutta integrator with fifth order truncation error. For example,
the ode45 command [Shampine and Reichelt, 1997] in MATLAB® implements a Dormand-Prince (4,5) pair
[Dormand and Prince, 1980] for variable step-size fourth order Runge-Kutta method. Then integrating (8) using
ode45 with ∆t = O (10−2) would induce a (local) truncation error of O (10−10). One may resort to even higher
order integrators [Hairer et. al., 1993; Hairer and Wanner, 1996] if further accuracy is desired. Using fixed
step-size fourth order Runge-Kutta discretization, the rate of convergence for N steps, is O (N−4).
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4.2 Computational time

Since both MC and PF operator based method propagate the samples through dynamics, the only difference
in computational speed comes from the construction of the respective joint PDF vectors. In MC method, this
is done by constructing a multidimensional histogram over the extended state space while in PF method, one
additional equation is propagated for each sample, to update the joint PDF values at each time, at each sample
site.

4.2.1 Time for computing joint PDF using MC histogram

Computational performance for univariate MC histogram construction is well understood and a considerable body
of literature exists [see for example, Haas et. al., 1995; Ioannidis, 2003] in the database and networking community.
Unlike the one-dimensional case [Jagadish et. al., 1998], constructing optimal multivariate histogram is NP-hard
[Muthukrishnan, 1998]. Hence several approximate algorithms have been proposed for the multi-dimensional case
based on greedy heuristics [Khanna et. al., 1997], wavelets [Vitter and Wang, 1999], kernel methods [Gunopulos
et. al., 2000] and discrete cosine transform [Greenwald and Khanna, 2001].

The optimality of a histogram can be cast as a primal-dual formulation [Jagadish et. al., 1998]. Let the sample
data-set be given by X ∶= {X1,X2,⋯,Xν}, where each sample point Xi is a d-tuple of the form (xi1 , xi2 ,⋯, xid),
i = 1,2,⋯, ν. Given # (X) =∶ ν number of samples in d dimensions, the primal problem strives to find the
minimum error histogram argmin

H(X)∈H (X)
∥ ρ (X) − H(X) ∥Lp(Ω) with a fixed computational budget of B buckets

in d dimensions. The minimization takes place over H (X), the set of all admissible histograms supported over
the sample data-set X. The error norm ∥ . ∥Lp(Ω) makes sense since ρ (X) stays in Lp at all times, whenever
the initial density ρ0 ∈ Lp, 1 ⩽ p ⩽ ∞. This will be detailed in section 5.1.2. Using dynamic programming, it can
be shown that the one dimensional primal problem is solvable in O (Bν2) time for p = 2 and in O (Bν3) time
otherwise. On the other hand, the dual problem, with # (X) =∶ ν number of samples, seeks a histogram such that
the dual error has at most E deviation from the primal error E⋆primal ∶= min

H(X)∈H (X)
∥ ρ (X)−H(X) ∥Lp(Ω). Notice

that the primal problem has B fixed but error is free. In the dual problem, error is specified as a constraint but
B is free. Hence the former is known as space bounded histogram problem while the latter is called error bounded
histogram problem. The best known runtime for one dimensional dual problem is due to [Guha and Koudas, 2002]

that provides an algorithm to ensure dual error ⩽ (1 + E)E⋆primal using B⋆
dual = B buckets, in O ((B

E
log ν)

3

+ ν)

time. In one dimension, both primal and dual problems require O (Bν) storage.
In multiple dimensions, there are very few results [see for example, Muthukrishnan and Suel, 2005] that

attempt the static primal-dual problem in approximately optimal sense (due to NP-hardness) to get a bound
in terms of dimension d, sample size ν and approximation parameter. In [Muthukrishnan and Suel, 2005], the
treatment was for a class of metrics for tiling histogram. In this paper, instead of analyzing the approximate
optimization problem, we estimate the time complexity for constructing static histogram from ν MC samples in
d dimensions with a specified mesh. Without loss of generality, we assume the data to lie in the first quadrant
and that the histogram grid is uniform. If the domain is bounded by a d-dimensional hypercube of length L and
along each dimension, the step-size of our uniform grid is b, then the objective is to estimate the time to construct

a histogram supported over B ∶= (L
b
)
d

buckets. A simple way to do this is shown in Algorithm 1.

From the algorithm, we can see that the inner loop checks whether a sample point falls inside a d-dimensional
bucket or not. Clearly, this has worst case complexity O (d). Hence Algorithm 1 takes O (νd) time and is linear in
both sample size and dimensions. It can be noticed that the complexity result holds even when the specified grid

is non-uniform, i.e. B =
d

∏
i=1

Li
bi

. If propagating nonlinear dynamics for each d-dimensional sample takes O (ζ (d))

time, then propagation using dynamics (till the snapshot of interest) takes total Tdyn = O (νζ (d)) time. Thus
overall runtime for MC joint PDF construction is Tdyn +O (νd).

4.2.2 Time for computing joint PDF using Liouville equation

The Liouville equation is solved along each sample trajectory through MOC. The associated ODE has joint PDF
ρ as the dependent variable with time t being the independent variable. The integrand contains the divergence of
the d-dimensional vector field and hence can be computed in O (d) time, provided the individual gradients have
been computed offline using numerical interpolation when the dynamics is available as data instead of analytical
expressions. This is the situation often encountered in practice and allows us to compute a bound that does not
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Algorithm 1 Calculate joint PDF using MC histogram
Require: X, L, b

1: B ← (L
b
)
d

2: bucket = 0B×1 ▷ Initialize the vector of buckets
3: for i = 1 to ν do ▷ The sample index
4: bucketID = 1 ▷ Initialize bucket index
5: for j = 1 to d do ▷ The dimension index

6: k ← ⌊X (i, j)
b

⌋ + 1

7: bucketID← bucketID + (k − 1) (B)
j−1
d

8: end for
9: bucket (bucketID) ← bucket (bucketID) + 1 ▷ Count the number of samples falling inside each bucket

10: end for

depend on the exact functional form of the dynamics. Thus the cost for MOC solution of the Liouville equation
with ν samples is O (νd). The overall cost for computing joint PDF through Liouville equation, thus becomes
Tdyn + O (νd). When compared to MC construction, the complexity is identical. Notice however that in MC
method, constructing joint PDF via histogram is a post-processing step. In PF operator based construction of
joint PDF via Liouville equation, the joint PDF values are computed “on the fly” along each trajectory.

5 Computation of marginals

Before discussing the marginal approximation algorithm and its computational performance, in section 5.1, we first
review some preliminaries for the same. The main purpose is to ensure notational consistency as the subsequent
sections depend on the tools described here. Then section 5.2 proceeds for obtaining a rate-of-convergence of the
approximation algorithm followed by assessing the computational speed in section 5.3.

5.1 Mathematical preliminaries

Let Ω ⊂ Rd be an open, connected domain. Let’s denote Ω as its closure and ∂Ω ∶= Ω∖Ω as the boundary. Further,
let Ωe ∶= Rd ∖Ω denote the associated exterior domain.

Definition 2. (Lipschitz domain) A bounded domain Ω ⊂ Rd with boundary ∂Ω, is said to be a Lipschitz
domain, if there exist constants λ,µ > 0, and a finite number of local coordinate systems (xk1 , xk2 ,⋯, xkd), 1 ⩽ k ⩽
K ∈ N, and associated local Lipschitz continuous mappings

φk ∶ {x̂k = (xk2 ,⋯, xkd) ∈ Rd−1∣ ∣xki ∣ ⩽ λ, 2 ⩽ i ⩽ d} z→ R

such that

∂Ω =
K

⋃
k=1

{(xk1 , x̂k) ∣ xk1 = φk (x̂k) , ∣x̂k ∣ < λ},

{(xk1 , x̂k) ∣ φk (x̂k) < xk1 < φk (x̂k) + µ, ∣x̂k ∣ < λ} ⊂ Ω, 1 ⩽ k ⩽K,
{(xk1 , x̂k) ∣ φk (x̂k) − µ < xk1 < φk (x̂k) , ∣x̂k ∣ < λ} ⊂ Ωe, 1 ⩽ k ⩽K.

Intuitively, such a domain simply guarantees the existence of finite number of balls to cover the boundary ∂Ω
and that the intersection of ∂Ω with any such ball results a Lipschitz 1 (see definition 8) graph. Geometrically, it
means that one can fit a cone with finite angle whose vertex is on ∂Ω, such that the cone remains in Ω. In other
words, both Ω and Ωe are locally situated on exactly one side of the boundary. In our context of PDF evolution,
we will assume that the support of the joint PDF remains a Lipschitz domain at all times. All subsequent results
for the quality of marginal approximation algorithm, will invoke this assumption.

We recall the function space Lp (Ω) as the normed linear space of pth order integrable functions on Ω for
0 < p < ∞ and as the normed linear space of essentially bounded functions for p = ∞.
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Definition 3. (Lp space) A function f (.) is said to be in Lp (Ω) if the corresponding norm is finite.

∥ f ∥Lp(Ω)∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∫
Ω
∣f (x) ∣p dx)

1/p
for 0 < p < ∞,

ess sup
x∈Ω

∣f (x) ∣ for p = ∞.

For 1 ⩽ p ⩽ ∞, they define Banach spaces except for p = 2, which becomes a Hilbert space equipped with the
inner product ⟨f, g⟩L2(Ω) ∶= ∫

Ω
f (x) g (x)dx. For 0 < p < 1, they are only quasi-Banach spaces. For 1 ⩽ p < q ⩽ ∞,

we have the embedding: Lq (Ω) ↪ Lp (Ω).
To work with the functional smoothness spaces for multivariate case, the concept of (mixed) weak derivatives

is useful since it extends the idea of classical derivatives to functions which are integrable, but may not be
differentiable.

Definition 4. (Weak derivatives) Let ν = (ν1, ν2,⋯, νd) be a multi-index of magnitude ∣ν∣∶=
d

∑
i=1

νi, where νi ∈ N0.

The function g ∈ L1 (Ω) is said to be the νth weak derivative of a function f ∈ L1 (Ω), denoted by Dνf , if

∫
Ω
fDνϕ dx = (−1)∣ν∣ ∫

Ω
ϕg dx, ∀ ϕ ∈ C∞

0 (Ω) .

Of particular interest is when the weak derivative of a function lands up in Lp. We say, Dνf ∈ Lp (Ω) if

∃ g ∈ Lp (Ω) such that ∫
Ω
fDνϕ dx = (−1)∣ν∣ ∫

Ω
ϕg dx, ∀ ϕ ∈ C∞

0 (Ω). With this notion of weak derivatives, we

can introduce Sobolev spaces W r (Lp (Ω)) as more general smoothness spaces of functions than Lp (Ω).

Definition 5. (Sobolev space) The Sobolev space W r (Lp (Ω)) ∶= {f ∈ Lp (Ω) ∣ Dνf ∈ Lp (Ω) , ∣ν∣⩽ r}, consists
of all functions in Lp (Ω), whose weak derivatives up to rth order, are also in Lp (Ω).

The above defines Banach spaces with norm ∥ f ∥W r
Lp(Ω)

∶=∥ f ∥Lp(Ω) + ∣f ∣W r(Lp(Ω)), where the seminorm

∣f ∣W r(Lp(Ω))∶=
r

∑
∣ν∣=1

∥ Dνf ∥Lp(Ω). Clearly, the space W 0 (Lp (Ω)) is identical to Lp (Ω). Further, W r (Lp (Ω)) ↪

Lp (Ω) and W r+1 (Lp (Ω)) ↪ W r (Lp (Ω)) (reduction theorem). A natural question is: when does W r (Lp (Ω))
embed in Lq (Ω)? Sobolev embedding theorem answers this question.

Theorem 2. (Sobolev Embedding Theorem) Consider a Lipschitz domain Ω ⊂ Rd, r ∈ N0 and 1 ⩽ p ⩽ ∞.

Let the critical Sobolev exponent τ be given by
1
τ
= 1
p
− r
d

. Then, we have the following compact embeddings for

Sobolev spaces W r (Lp (Ω)).

(a) W r (Lp (Ω)) ↪ Lq (Ω) , 1 ⩽ q ⩽ τ, if r − d
p
< 0,

(b) W r (Lp (Ω)) ↪ Lq (Ω) , 1 ⩽ q < ∞, if r − d
p
= 0,

(c) W r (Lp (Ω)) ↪ C (Ω) , if r − d
p
> 0.

The original proof was due to [Sobolev, 1938] and the modified versions can be found in [Gilbarg and Trudinger,
1977].

Measuring the smoothness of a function using (weak) derivatives is too crude for many practical purposes.
For any function f (.), modulus of smoothness provides a generic characterization.

Definition 6. (Modulus of smoothness) The rth modulus of smoothness of f ∈ Lp (Ω), 0 < p ⩽ ∞, is defined
as

ωr (f, t)Lp(Ω) ∶= sup
0⩽∣h∣⩽t

∥∆r
h (f, x ) ∥Lp(Ωr,h)

where the rth order difference operator ∆r
h (f, x ) ∶=

r

∑
k=0

(−1)r−k (r
k
)f (x + kh), and the vectors x ∶= (x1,⋯, xd),

h ∶= (h1,⋯, hd) ∈ Rd. Further, Ωr,h ∶= {x∣ x + kh ∈ Ω, k = 0,1,⋯, r} ⊂ Ω.
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It can be seen that ωr (f, t)Lp(Ω) is finite for any t. Moreover, it is a continuous, monotone increasing function
of t that vanishes at t = 0. Intuitively, how fast ωr (f, t)Lp(Ω) decays as t → 0, is a measure of how smooth the
function f is. Besov spaces capture this generic smoothness characterization of a function through ωr (f, t)Lp(Ω).

Definition 7. (Besov space) The Besov space Bαq (Lp (Ω)) consists of functions f ∈ Lp (Ω) which have smooth-
ness α.

We say f ∈ Bαq (Lp (Ω)), 0 < α, p, q ⩽ ∞, if the associated norm ∥ f ∥Bαq (Lp(Ω)) ∶= ∥ f ∥Lp(Ω) + ∣f ∣Bαq (Lp(Ω)), is
finite; where the Besov seminorm is defined as

∣f ∣Bαq (Lp(Ω)) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
∞

0
(t−α ωr (f, t)Lp(Ω))

q dt

t
)

1/q
for 0 < q < ∞,

sup
t>0

∣t−α ωr (f, t)Lp(Ω) ∣ for q = ∞,

where r ∶= ⌊α⌋ + 1. The parameter q provides a finer gradation of functional smoothness. We have Bαq (Lp (Ω)) ↪
Lp (Ω) and Bαq1 (Lp (Ω)) ↪ Bβq2 (Lp (Ω)) for 0 < β < α, 0 < q1, q2 ⩽ ∞, 1 ⩽ p ⩽ ∞ (reduction theorem). Also, we
have the following embeddings: Bαq1 (Lp (Ω)) ↪ Bαq2 (Lp (Ω)) for 0 < q1 < q2 ⩽ ∞, 1 ⩽ p ⩽ ∞; Bαq (Lp1 (Ω)) ↪
Bαq (Lp2 (Ω)) for 1 < p2 ⩽ p1. Since α need not be a natural number, Besov spaces are more general smoothness
spaces than Sobolev spaces. However, the spaces W r (Lp (Ω)) and Brq (Lp (Ω)), r ∈ N, are not the same, unless
p = 2, q = 2, when they enjoy a Hilbert space structure.1 Various equivalent norms and interpolation properties
of Besov spaces can be found in [DeVore and Popov, 1988].

Definition 8. (Lipschitz and generalized Lipschitz space) The Lipschitz space Lip (α, r,Lp) is defined as

Lip (α, r,Lp) ∶= {f ∶ ωr (f, t)Lp ⩽Mtα ∀ t > 0}. (9)

For r = 1, Lip (α,1, Lp) is often simply written as Lip (α,Lp) ∶= {f ∶∥ f (x + h)−f (x) ∥Lp(Ω1,h)⩽Mhα ∀h > 0}. In
general, it’s cumbersome to track the definition for different values of r. To get around this, generalized Lipschitz
spaces Lip⋆ (α,Lp) are introduced as

Lip⋆ (α,Lp) ∶= Lip (α, r,Lp) , α > 0, r ∶= ⌊α⌋ + 1. (10)

Notice that for 0 < α < 1, Lip⋆ (α,Lp) = Lip (α,Lp). But in general, Lip⋆ (α,Lp) is weaker than Lip (α,Lp).

Definition 9. (Bounded variation space) The space of pth bounded variation, BVp is given by

BVp ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∶ ∣f ∣BVp ∶= sup

0⩽x0⩽⋯⩽xN⩽1
(
N

∑
i=1

∣f (xi) − f (xi−1) ∣p)
1/p

< ∞
⎫⎪⎪⎬⎪⎪⎭
, 1 ⩽ p < ∞, (11)

where N is arbitrary. For p = 1, often it is simply denoted as BV space.

Definition 10. (DeVore diagram) DeVore diagram is a tool to visualize functional smoothness spaces and

various embeddings among them through a plot of
1
p

(as the abscissa) versus smoothness α (as the ordinate),

1 ⩽ p ⩽ ∞, 0 ⩽ α.

To illustrate its utility, consider the DeVore diagram in Fig.1(a). On the x-axis, we have Lp spaces, 1 ⩽ p ⩽ ∞.
The embedding Lq (Ω) ↪ Lp (Ω) for 1 ⩽ p < q ⩽ ∞, mentioned earlier, implies that any space on the x-axis of
DeVore diagram, is embedded to another on its right. Similarly, if we consider the discrete natural number levels
r ∈ N on the y-axis, then C∞ (Ω) ↪ ⋯ ↪ Cr (Ω) ↪ Cr−1 (Ω) ↪ ⋯ ↪ C (Ω) ↪ L∞ (Ω), as shown. In general, a

point (1
q
, r) in Fig.1(a) represents the Sobolev space W r (Lq (Ω)) and as we climb vertically up from Lq (Ω), the

spaces get smaller, smoother and nested, i.e., W r (Lq (Ω)) ↪W r−1 (Lq (Ω)) ↪ ⋯ ↪ Lq (Ω). In particular, we can
now provide an illustration of Sobolev embedding theorem. To answer whether W r (Lp (Ω)) ↪ Lq (Ω), we simply
draw a line (solid, red) from Lq (Ω) with slope d, called Sobolev embedding line. The theorem says that any point

1Sobolev spaces have been generalized to have fractional order smoothness (see [Stein, 1970]; [Adams, 1975], for example). However,
it can be shown that (see Theorem 6.7 in [DeVore and Sharpley, 1993]) the fractional order Sobolev space W r (Lp (Ω)), where r > 0 is
a fraction, is equivalent to the special family of Besov space Brp (Lp (Ω)), 1 ⩽ p < ∞. Hence, in this paper, without loss of generality,
the Sobolev spaces are dealt with integer smoothness only.
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slope

slope

Figure 1: DeVore diagrams illustrating (a) (left) Sobolev spaces, (b) (right) Besov spaces and their embeddings.

(1
p
, r) lying to the left or on the Sobolev embedding line, is compactly embedded in Lq (Ω). Sobolev himself

showed [Sobolev, 1938] such embeddings are strict in the sense that points to the right of the Sobolev embedding
line, can not be embedded in Lq (Ω). We can intuitively see from the diagram that as we go to higher dimensions
(d large), it becomes increasingly difficult to have Sobolev embeddings. Notice that although Theorem 2 holds

for any 1 ⩽ q ⩽ ∞, there is a minor technical nuisance when
1
q

is pushed left to the origin (L∞ space). In such a

situation, if (1
p
, r) is on the Sobolev embedding line, then Sobolev embedding fails (part (b) of Theorem 1). This

is sometimes referred as endpoint Sobolev anomaly.
Fig.1(a) shows that only the quantized integer levels of smoothness are populated by the Sobolev spaces. In

Fig.1(b), we illustrate that Besov spaces ‘fill in the gaps’ by allowing any smoothness α ⩾ 0. Fig.1(b) allows

any point (1
p
,α) in the DeVore diagram to be defined as the Besov space Bαq (Lp (Ω)). As before, we have

the vertical embeddings Bαq1 (Lτ (Ω)) ↪ Bβq2 (Lτ (Ω)) ↪ ⋯ ↪ Lτ (Ω) for 0 < β < α, 0 < q1, q2 ⩽ ∞, 1 ⩽ τ ⩽ ∞.

Furthermore, we have Sobolev-type embedding theorem for Besov spaces that says any point (1
p
,α) lying strictly

left to the Sobolev embedding line (solid, red) through Lτ (Ω), is compactly embedded in Lτ (Ω). As before, such
an embedding is strict in the sense that points to the right of the Sobolev embedding line, can not be embedded

in Lτ (Ω). However, if the point (1
p
,α) is on the Sobolev embedding line, then whether it can be embedded in

Lτ (Ω) depends on q. In such a situation, Bαq (Lp (Ω)) ↪ Lτ (Ω) iff q ⩽ max (p,1). Further structural properties
of Besov spaces can be found in [Triebel, 1992; Peetre, 1976; Besov and Kalyabin, 2003; DeVore and Yu, 1991].

5.2 Accuracy

To analyze the accuracy of the approximation algorithms for computing marginals, we will proceed in two steps.
First, we will discuss the regularity of the true marginal densities to be approximated (section 5.1.1). Second,
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the approximation set up and rate of approximation will be described (section 5.1.2).

5.2.1 Regularity of the marginals

To decide the regularity of the marginal PDFs, one must begin with the regularity of the joint PDFs computed
through Liouville equation. Since we are interested to approximate the marginal snapshots, we will restrict
ourselves to spatial regularity only. Then, the question of interest is: at fixed t = t⋆, what kind of functional
smoothness class does the joint density ρ (x, t⋆) belong to?

It’s obvious that being a density function, at least ρ (x, t⋆) ∈ L1 (Rn), where n ∶= ns + np is the dimension of
the extended state space (i.e. support of the joint density). To characterize further, one must know the regularity
of the nonlinear dynamics. To see this, one can expand the gradient term in Liouville equation using the product
rule of differentiation and then notice that, even though the initial density ρ0 (x) ∈ L1 (Rn), depending on the

regularity of f (x), the terms
∂ρ

∂xi
may or may not lie in L1 (Rn). Hence, we can not always guarantee that

ρ (x, t⋆) ∈W 1 (L1 (Rn)).
In the literature, some attempts [DiPerna and Lions, 1989; Emamirad and Protopopescu, 1996; Le Bris and

Lions, 2004; Le Bris and Lions, 2008] have been made to characterize the smoothness of the evolving joint PDF,
subject to a dynamics whose smoothness is specified. Since such PDF evolution is governed by a transport PDE
(Liouville equation for ODE dynamics, Fokker-Planck equation for SDE dynamics), characterizing smoothness of
the joint PDF calls for a regularity analysis of the associated PDE. The analysis proceeds in two steps. First,
an a priori estimate for the solution of the PDE is obtained, followed by a regularization procedure. For this
two steps to be possible, one needs to impose some restrictions on the vector field. An important result in this
direction is due to [DiPerna and Lions, 1989], stated below.

Theorem 3. (Regularity of the joint PDF under Liouville evolution with locally Sobolev dynamics)
[DiPerna and Lions, 1989] When the dynamics f ∶= f1 + f2 is such that f ∈ W 1

loc (L1 (Rn)), ∇.f ∈ L∞ (Rn),
∣f1∣

1 + ∣x∣
∈ L1 (Rn) and

∣f2∣
1 + ∣x∣

∈ L∞ (Rn), then the solution of eqn. (7) at time t = t⋆ satisfies ρ (x, t⋆) ∈ Lp (Rn),

provided the initial density ρ0 (x) ∈ Lp (Rn), 1 ⩽ p ⩽ ∞.

Remark 1. In [Emamirad and Protopopescu, 1996], it was demonstrated that if we remove the asymptotic growth

condition
∣f ∣

1 + ∣x∣
∈ (L1 +L∞) (Rn), then the above statement holds for p = 1.

Remark 2. Further, it has been shown [Ambrosio, 2004] that the requirement f ∈W 1
loc (L1 (Rn)) can be relaxed

by f ∈ BVloc (Rn). Since W 1 (L1 (Rn)) ↪ BV (Rn) ↪ B1
∞ (L1 (Rn)), it’s natural to ask whether one can provide

PDF regularity with Besov smoothness (i.e. f ∈ B1
∞ (L1 (Rn))) for the dynamics. To the best of our knowledge,

this remains yet to be addressed.

Now we are going to claim that under mild assumption, ρ (x, t⋆) ∈ Bα1 (Lp (Rn)) , 0 < α < 1, p = 1. To prove
such a claim, it would have been great if we could show ρ (x, t⋆) ∈ W 1 (Lp). Then we could use the embedding
W 1 (Lp) ↪ B1

1 (Lp) ↪ Bα1 (Lp) and conclude the proof. However, as argued in the second paragraph of this
section, we can not, in general, guarantee ρ (x, t⋆) ∈W 1 (L1) for a joint PDF under Liouville evolution. Theorem
3 guarantees the evolved PDF snapshot to be in Lp (Rn) whenever the initial density is in Lp (Rn). In the most
general case, p = 1 and we seek a subspace of L1 (Rn) where our PDF may evolve to.

Assumption 1. ρ (x, t⋆) ∈ BV (Rn).

The assumption assures that for p = 1, we can slightly relax our demand for Sobolev regularity and enables
us to show ρ (x, t⋆) ∈ Bα1 (L1 (Rn)) , 0 < α < 1. This assumption can be justified by thinking the ODE dynamics
as a weak noise limit of SDE dynamics. In the latter case, the PDF evolution occurs with bounded Wasserstein
distance [Jordan et. al, 1998] and hence with bounded total variation [Gibbs and Su, 2002]. In practice, such
an assumption is commonplace in nonparametric density estimation [Obereder et. al., 2007]. Now we relax the
space where the evolved joint PDF may lie, by interpolating between L1 (Rn) and BV (Rn).

Proposition 1. Assumption 1 implies ρ (x, t⋆) ∈ Bα1 (L1 (Rn)), 0 < α < 1.

Proof. Since BV (Rn) ↪ B1
1 (L1 (Rn)) ↪ Bα1 (L1 (Rn)), 0 < α < 1, the result follows from Assumption 1.
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Remark 3. It is not clear to us if the assumption 1 can be lifted while establishing Besov regularity of the
joint PDF. One way to do this could be arguing that under some regularity of the nonlinear dynamics, Liouville
operator is pseudo-differential [Taylor, 1981] and then proving that the operator preserves Besov regularity, similar
to [Nguyen, 2010]. Pursuing this direction is beyond the scope of this paper.

So far we have argued the Besov regularity of the n-variate joint PDF ρxn×1 (x1, x2,⋯, xn). To arrive at the
Besov regularity of the m-variate marginal density ρxm×1 (x1, x2,⋯, xm), 1 ⩽ m < n, m ∈ N, we utilize the Fubini
property which, roughly speaking, says that a function is in a Besov space on X1 ×X2 with certain smoothness
iff it lies separately in each Besov space on X1 and on X2 respectively, with the same smoothness.

Theorem 4. (Fubini property for Besov spaces) For any smoothness s > d( 1
min (p,1)

− 1), Bsp (Lp (Rd))

has the Fubini property. More generally, if X1 and X2 are compact manifolds, then

Bsp (Lp (X1 ×X2)) = Lp (X1,B
s
p (Lp (X2)))⋂Lp (X2,B

s
p (Lp (X1))) .

Proof. See [Triebel, 1983, Theorem 2.5.13].

Corollary 5.

ρxn×1 (x1, x2,⋯, xn) ∈ Bα1 (L1 (Rn)) ⇒ ρxm×1 (x1, x2,⋯, xm) ∈ Bα1 (L1 (Rm)) , 0 < α < 1, 1 ⩽m < n, m ∈ N.

Proof. Since p = 1 and the smoothness α > n (1 − 1) = 0, the result follows from the above theorem.

Corollary 5 shows that marginalization preserves Besov smoothness. This smoothness characterization of
marginal density will be instrumental for deriving rate of convergence for approximating the same (see Theorem
6).

5.2.2 Rate of approximation

Having obtained an estimate for the true marginal PDF, we now concentrate on the performance of the piecewise
constant approximation for the same. First, let’s outline the approach of our analysis. Consider the generic
approximation set up as described in Fig. 2(a), where one approximates a function f ∈ X using simpler functions
drawn from ΣrN . Here N denotes the number of partitions of the support and r quantifies smoothness. For
example, ΣrN could be piecewise algebraic polynomials of order r. Our aim is twofold. First, given a fixed
computational budget N , if someone picks up a function from a subspace of X , we want to know the best rate
of approximation for f , achievable in this set up, as a function of N . Second, we want to answer the inverse
problem. Namely, if the user specifies a desired rate of approximation, can we characterize the subspace of X ,
to which the function f must belong to? These two answers, together establish the one-to-one correspondence
between a function space and a rate of approximation.

To keep things simple, we will restrict ourselves to the framework of linear approximation, where ΣrM +ΣrN =
ΣrM+N . Using the theory of K functionals and modulus of smoothness (definition 6), one can derive [DeVore and
Lorentz, 1993] a ‘black box theorem’ for Lipschitz domain Ω ⊂ Rm (definition 2) that says, whenever one can
prove a Jackson-type inequality for f ∈ Yr, where Yr is a subspace of (hence more regular than) X (see Fig. 2(a))

EN (f)X ∶= inf
S∈Σr

N

∥f − S∥X(Ω) ≲ N−r ∣f ∣Yr , (12)

and a companion Bernstein-type inequality for g ∈ ΣrN

∣g∣Yr ≲ Nr ∥ g ∥X , (13)

then

EN (f)X ≲ N−α/m ⇐⇒ f ∈ Aαq (X ,Yr)θ,q=∞ (14)

where θ ∶= α
r
∈ (0,1) measures how different is the characterizing space of functions Aαq (obtained as an interpo-

lation between X and Yr via θ) compared to Yr. A small value of θ means Aαq is slightly different than Yr, while
a large θ implies Aαq is slightly different than X , i.e. a large subspace of X . Clearly, as α increases, the quality of
approximation improves.
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Figure 2: (a) The approximation set up: functions from X (blue) are to be approximated by those from Σrn
(red). By choosing a space Yr (green) to satisfy (12) and (13), we can characterize the approximation space
Aαq (with dotted boundary) from ‘black box theorem’; (b) DeVore diagram showing the characterization of the
approximation space Aαq via interpolation between X and Yr.

To illustrate how the ‘black box theorem’ characterizes the approximation space via interpolation, consider
approximating univariate functions in X = Lp using functions from ΣrN = ΣN = the space of trigonometric poly-
nomials of degree N over [−π,π]. In this situation, one can prove [DeVore and Lorentz, 1993] a Jackson-type and
a Bernstein-type inequality with Yr =W r (Lp) and characterize Aαq = (Lp,W r (Lp))α

r ,q
= Bαq (Lp). In particular,

EN (f)Lp[−π,π] ≲ N−α ⇐⇒ f ∈ Bα∞ (Lp). However, if the approximating space ΣrN consists of piecewise algebraic
polynomials of order r, then Yr =W r (Lp (Ω)) does not work since the LHS of the corresponding Bernstein-type
inequality (eqn. (13)) becomes undefined. It can be shown [DeVore and Lorentz, 1993] that Yr = Br−1+d/p

∞ (Lp (Ω))
works instead. This is pictorially illustrated in Fig. 2(b) where the approximation space is characterized by in-
terpolating between Br−1+d/p

∞ (Lp (Ω)) and Lp (Ω), in lieu of interpolating between W r (Lp (Ω)) and Lp (Ω). The
reason why a piecewise polynomial of order r has smoothness Br−1+d/p

∞ (Lp (Ω)) is explained in Appendix A.
The marginal computation algorithm through level sets (or slices) is shown as a schematic in Fig. 3(b). Let

the jth level set of the joint density be denoted as Λj , j = 1,2,⋯, (N + 1). Further, let’s assume that the level

Λj contains nj points and the total number of samples representing the joint PDF be ν ∶=
N+1

∑
j=1

nj . Consider the

following piecewise constant approximations of the marginals from MC and PF-based joint PDFs

SMC =
N

∑
j=1

αjχIj , αj ∶=
nj

ν
(15)

SPF =
N

∑
j=1

βjχIj , βj ∶=
1
nj

nj

∑
i=1

ϕi, (16)

where the value of the marginal PDF at level Λj is held fixed through the interval Ij ∶= [Λj ,Λj+1) and ϕi

denotes the joint PDF value at a sample point i. Notice that in eqn.(15), one has to compute nj =
ν

∑
i=1

χij where

χij ∶= χzi∈Λj , zi being the ith multi-sample, i = 1,⋯, ν.
The true marginal PDF ρm ∶= ρxm×1 (x1, x2,⋯, xm), being a measurable function, has at least L1 (Ω), Ω ∈ Rm,

regularity. In what follows, we prove that approximating ρm by piecewise constant function S ∶=
N

∑
j=1

cjχIj results

O (N−α/m) approximation error with α ∈ (0,1).
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Theorem 6. Let ρm ∈ L1 (Ω) and Σ1
N be the class of all piecewise constant functions supported over the disjoint

union of N equipartitions of the Lipschitz domain Ω ∈ Rm. Then the approximation error

EN (ρm)L1(Ω) ∶= inf
S∈Σ1

N

∥ρm − S∥L1(Ω) ≲ N−α/m, 0 < α < 1.

Proof. Here X = L1 (Ω). From proposition 3 in Appendix A, we can take Yr = B1
∞ (L1 (Ω)) since

S ∈ Bn∞ (L1 (Ω)) ↪ B1
∞ (L1 (Ω)) , 1 < n ∶= ns + np. (17)

So we are in the setting depicted in Fig.2 with p = 1. The Jackson-type and Bernstein-type inequalities for this
situation were proved in [DeVore and Lorentz, 1993] for 1 ⩽ p < ∞. In particular, for p = 1, using ‘black box
theorem’ we get

EN (ρm)L1(Ω) ≲ N
−α/m, ⇐⇒ ρm ∈ (L1 (Ω) ,B1

∞ (L1 (Ω)))
θ,q=∞ = Bα∞ (L1 (Ω)) , 0 < α < 1. (18)

From Corollary 5, we know ρm ∈ Bα1 (L1 (Ω)) ↪ Bα∞ (L1 (Ω)), 0 < α < 1, where the last relation follows from the
embedding of Besov spaces discussed in Section 5.1.1. Hence the ⇐ direction of (18) guarantees the best rate
of approximation as O (N−α/m). This concludes the proof. Additionally, the ⇒ direction of (18) guarantees the
sufficiency, i.e. with fixed computational budget N , if the desired rate of approximation is O (N−α/m), then the
function must belong to the specified interpolation space.

Remark 4. Since 0 < α < 1, quality of approximation improves as α gets closer to unity and vice versa. In partic-
ular, the approximation error curve always lies above O (N−1) curve. For a fixed α, the quality of approximation
exacerbates with increasing dimension (m). The trend is illustrated in Fig.3 (a)–(c). As m increases, one must
increase α to guarantee a fixed accuracy, meaning the performance guarantee in high dimensions can not be met
unless inordinate smoothness is ensured, a fact referred as the ‘curse of dimensionality’ [Bellman, 1957].

Remark 5. Notice that the approximation space Σ1
N is linear since S1 ∈ Σ1

M , S2 ∈ Σ1
N ⇒ S1 + S2 ∈ Σ1

M+N .
Using the Sobolev-type embedding theorem for Besov spaces described in section 5.1.1, a corresponding ‘black
box theorem’ can be found [DeVore, 2009] for nonlinear approximation, provided the approximating spaces are
nested (ΣN ⊂ ΣN+1) and satisfy certain growth condition (ΣM +ΣN ⊂ Σa(M+N), a ⩾ 1). In Appendix B, we sum-
marize different ‘black box type theorems’ for nonlinear approximation and argue that in our context, nonlinear
approximation methods do not improve the rate of convergence of linear approximation obtained in this section.

Our next agenda is to prove that neither SMC nor SPF is the optimal approximation. We show that the optimal
piecewise constant approximation is attained by holding the median of the joint PDF values corresponding to the
samples lying at level Λj , over the interval Ij .

Proposition 2. EN (ρm)L1(Ω) ∶= argmin
S∈Σ1

N

∥ρm − S∥L1(Ω) = S⋆PF ∶=
N

∑
j=1

γjχIj , where γj ∶= median({ϕi}
nj
i=1).

Proof. The proof is by contradiction. Let’s assume, if possible, for ε1 > 0, ∃ δ1 > 0 such that EN (ρm)L1(Ω) =

∥ρm −S1∥L1(Ω) = ∥ρm −S⋆PF∥L1(Ω) − δ1, where S1 ∶=
N

∑
j=1

(γj ± ε1)χIj . In words, an ε1 perturbation from the median

value, lowers the approximation error by an amount δ1. Now consider 0 < ε2 < ε1 and let S2 ∶=
N

∑
j=1

(γj ± ε2)χIj

such that ∥ρm − S2∥L1(Ω) = ∥ρm − S⋆PF∥L1(Ω) − δ2. Since Ω = ⋃Nj=1 Ij with Ij ⋂ Ik = ∅, ∀j ≠ k, for any generic

S =
N

∑
j=1

cjχIj , we can write ∫
Ω
∣ρm − S∣ dx =

N

∑
j=1
∫
Ij
∣ρm − cj ∣ dx. Now we can look at the inner integral for each

interval and see that if cj is taken as γj ∶= median (ϕi)
nj
i=1 then by definition of median, there are as many joint

PDF samples less than it than greater than it. More formally, if we respectively substitute (γj ± ε1) and (γj ± ε2),
then δ2 > δ1, i.e. as we move closer toward the median, the approximation error decreases. This contradicts our
assumption. Hence the statement.

Remark 6. The above is similar to a result in order statistics [David and Nagaraja, 2003] that guarantees median
as the minimizer of absolute deviation for random samples in L1 norm. The connection can be seen, for example,
by replacing the inner integral in the proof above by its quasi-Monte-Carlo (QMC) approximation. Interestingly,
the same theory, also guarantees that in the L2 norm, sample mean is the minimizer. This is true in our case
too resulting SPF in eqn.(16) as the optimal approximation provided ρm ∈ L2 (Ω). In general, the MC and PF
marginal approximation errors ∥ρm − SMC∥L1 and ∥ρm − SPF∥L1 are suboptimal.
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(a) (b)

(c) (d)

Figure 3: (a)–(c) The color value indicates the m dimensional marginal approximation error EN (ρm) as a function
of smoothness α, support equipartition of cardinality N , and dimension m. The accuracy improves as α decreases,
N increases and m decreases and vice versa. (d) The schematic shows the marginal computation algorithm. Here
computing univariate marginal ρm (x1) from the bivariate joint PDF is shown. The gray region denotes the
instantaneous support of the joint PDF. The sample colors indicate joint PDF values at that point (red = high,
blue = low etc.).
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Remark 7. In Fig. 4, the approximated univariate marginal snapshots are plotted for the three-state hypersonic
entry dynamics described in [Halder and Bhattacharya, 2011], at non-dimensional time t̃ = 0.3. The states are
altitude (h) in Km, total velocity (V ) in Km/sec and flight path angle (FPA) in degrees, respectively. The initial
joint PDF was assumed to be N (µ,Σ), with µ = [80 Km,3.5 Km/sec,−2○]T and Σ is constructed by assuming
10% variance along each dimension about the respective means.
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Figure 4: Univariate marginal snapshots at non-dimensional time t̃ = 0.3 for the three-state hypersonic entry
dynamics described in [Halder and Bhattacharya, 2011]. In each of the above subplots, SMC (red, solid) is the
MC approximation (eqn. (15)), SPF (blue, dash-dot) is the suboptimal PF approximation (eqn. (16)), and S⋆PF

(green, dashed) is the optimal PF approximation (Proposition 2).

5.3 Computational time

We recall that total number of samples ν ∶=
N+1

∑
j=1

nj . Both deterministic [Blum et. al., 1973; Dor and Zwick,

1999] and randomized algorithms [Floyd and Rivest, 1975; Cunto and Munro, 1989] are available to compute

the median (γj) in linear (O (nj)) time. Thus constructing S⋆PF requires
N+1

∑
j=1

O (nj) = O (ν) time. On the other

hand, constructing βj requires exactly (nj − 1) + 1 = nj operations. Hence, computing SPF requires exact ν

operations. However, for computing SMC , one needs to evaluate nj =
ν

∑
i=1

χij where χij ∶= χzi∈Λj , zi being the ith

multi-sample, i = 1,⋯, ν. The key observation here is that for PF operator based approximation algorithms, the
availability of joint PDF values allow the approximation to be constructed by looking at the joint PDF vector
on each level set. In MC method, however, we have to count samples in multiple dimensions of the level sets.
Hence the dimensionality of the level set (n −m) affects the time complexity of approximate MC marginals. For
example, computing univariate marginals (m = 1) from a tri-variate (n = 3) joint PDF requires counting samples
over two-dimensional level sets [see Fig. 6, Halder and Bhattacharya, 2011].

At a given `-dimensional level set Λj , MC implementation executes χij ∶= χzi∈Λj , zi, i = 1,⋯, ν, total ν` times
and is the rate determining step since constructing αj requires additional O (ν)+1 operations. Hence constructing
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MC marginal needs total
N+1

∑
j=1

O (ν`) number of operations. In the worst case, N+1 = ν; thus worst case complexity

is O (ν`+1). For us, ` = n−m and hence computing SMC needs O (νn−m+1) time. For a fixed computational budget
of B buckets, the so called B-histogram [Thaper et. al., 2002] marginal requires O (Bνn−m) time. Notice that
none of these are optimal.

6 Conclusion

Rigorous performance bounds for dispersion analysis were obtained with Monte Carlo (MC) simulation and
a Perron-Frobenius (PF) operator based formulation, proposed recently in [Halder and Bhattacharya, 2011].
Analysis presented in this paper demonstrate that with same number of samples, the propagation of samples and
approximate PDF construction via histogram have same runtime complexity with that of ‘on the fly’ exact joint
PDF propagation via Liouville equation. However, with a fixed computational budget, the accuracy of the MC
constructed PDF is always worse than O (N−1), N being the number of tiling histogram partitions. However, the
MOC implementation of the Perron-Frobenius operator formalism has zero total error, in case the ODE initial
value problem (IVP) corresponding to the MOC formulation of Liouville PDE is analytically integrable. In case
of numerical integration, the error can be no more than the small integration error, depending on the order
of the ODE IVP solver. From the statistical analysis perspective, often the low dimensional marginal density
is the object of interest. We analyzed the performance bounds for marginal approximations in MC and PF
framework. We derived the optimal marginal approximation in PF framework and showed that in regard with
marginal approximation, PF operator formulation improves both accuracy and runtime complexity, compared to
MC simulation.
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A Besov smoothness of a spline

For the analysis below, we take 1 ⩽ p < ∞. Unless otherwise mentioned, we consider functions in domain Ω ⊂ Rd.

Lemma 1. A piecewise constant polynomial S ∈ Lip(d
p
,Lp).
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Proof. Without loss of generality, we consider S (x) ∶= χ[0,1]d , where x = (x1, x2,⋯, xd) ∈ Rd. Following definition
6 in section 5.1.1, we have

∥∆1
h (S,x) ∥p

Lp([0,1]d)
= ∥ S (x + h) − S (x) ∥p

Lp([0,1]d)

= ∫
[0,1]d

∣S (x + h) − S (x) ∣p dx

= ∫
0

−h1
∫

0

−h2

⋯∫
0

−hd
1p dx + ∫

1

1−h1
∫

1

1−h2

⋯∫
1

1−hd
1p dx

⇒ ωr (S, t)Lp([0,1]d) = sup
∣h∣⩽t

∥∆1
h (S,x) ∥Lp([0,1]d) = sup

∣h∣⩽t
(2

d

∏
i=1

hi)
1/p

=
⎧⎪⎪⎨⎪⎪⎩

21/p t1/p for d = 1,
2
d+1
p d−d/2p td/p for d ⩾ 2,

(19)

where the constrained optimization has the well-known geometric interpretation that the hyperrectangle of max-

imum volume inscribed in a given d-dimensional sphere of radius t, is the hypercube with volume ( 2 t√
d
)
d

. From

(19) and (9), we have

ωr (S, t)Lp([0,1]d) ≲ td/p ⇒ S ∈ Lip(d
p
,Lp) . (20)

This completes the proof.

Lemma 2 (Zygmund, 1945). Lip⋆ (α,Lp) = Lip (α,Lp), for 0 < α < 1.

Remark 8. Here is a counterexample illustrating that the restriction over α is necessary in the above lemma.
Consider the univariate function f (x) = x logx supported over [0,1]. We want to test whether this function
lands up in Lipschitz and/or generalized Lipschitz space with α = 1. Thus for the weak Lipschitz space, r = 2.
Using series expansion, it can be easily verified that ∣f (x + h) − f (x)∣ ≰ Mh implying f (x) ∉ Lip 1. However,
∣f (x + 2h) − 2f (x + h) + f (x)∣ ⩽Mh for some constant M , implying f (x) ∈ Lip⋆ 1. Thus the spaces in the above
lemma are not same for α = 1. Lip⋆ 1 is also known as Zygmund space after [Zygmund, 1945], who first pointed
out this distinction.

Lemma 3. Lip⋆ (α,Lp) = Bα∞ (Lp).

Proof. From definition 7 in section 5.1.1, we know that

Bα∞ (Lp) = {f ∶ ∣f ∣Bα∞(Lp(Ω)) ∶= sup
t>0

∣t−α ωr (f, t)Lp(Ω) ∣ = M < ∞} , r ∶= ⌊α⌋ + 1. (21)

Thus f ∈ Bα∞ (Lp) ⇒ t−α ωr (f, t)Lp(Ω) ⩽ M , the value of the Besov supremum quasi-norm in eqn. (21).
Rearranging, ωr (f, t)Lp(Ω) ⩽ Mtα and notice that the condition r = ⌊α⌋ + 1 appears in both eqn. (7) and (10).
Hence from (10), f ∈ Bα∞ (Lp) ⇒ f ∈ Lip⋆ (α,Lp). This completes one direction of the proof. For proving the
opposite direction f ∈ Lip⋆ (α,Lp) ⇒ f ∈ Bα∞ (Lp), one can proceed likewise by starting from (10) to arrive at
(7). We omit this for brevity.

Proposition 3. A piecewise constant polynomial S ∈ Bd/p∞ (Lp).

Proof. The proof follows by combining lemma 1, 2 and 3.

Although this proposition suffices for our purpose, more generally, the following holds.

Theorem 7. For an rth order spline S ∈ S r, we have S ∈ Br−1+d/p
∞ (Lp).

Proof. We sketch the outline of the proof. First, we want to prove by induction that if S ∈ S r, then S(r−1) ∈
Lip(d

p
,Lp) ∀ r ∈ N. For this, lemma 1 need to be used as an induction step for r = 1 (piecewise constant spline).

For the other induction step (piecewise linear spline), an explicit calculation akin to eqn. (19) confirms the claim

for r = 2. Together with an inductive hypothesis, we can then establish S ∈ S r ⇒ S(r−1) ∈ Lip(d
p
,Lp). But then,

via lemma 2 and 3, proposition 3 assures S ∈ S r ⇒ S(r−1) ∈ Bd/p∞ (Lp). Finally, invoking the reduction theorem2

for Besov spaces, we finish the proof.
2In section 5.1.1, we touched upon the reduction theorem for Besov spaces, which says g(r) ∈ Bα

∞
⇒ g ∈ Br+α

∞
, ∀r ∈ N. The result

is evident from Fig. 1(b) and a formal proof is available in [DeVore and Lorentz, 1993].
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B Performance guarantees for nonlinear approximation

In nonlinear approximation, due to nonuniform partitioning of the support, the approximating space does not
satisfy superposition principle. However, when ΣN ⊂ ΣN+1 and ΣM + ΣN ⊂ Σa(M+N), a ⩾ 1 fixed, then we can
state ‘black box theorems’ similar to the linear approximation case, for functions in Lipschitz domain Ω ⊂ Rd. The
exact statements of such theorems, depend on the type of nonlinear approximation being performed, e.g. N -term
approximation (in wavelet basis or splines), adaptive approximation, tree approximation, greedy algorithms etc.
Without detailing these frameworks, we provide the readers a flavor of ‘black box type theorems’ for two specific
kinds of nonlinear approximation: N -term approximation and adaptive approximation. As before, our job is to
characterize the best rate of approximation. For the proofs, the modus operandi is to establish a Jackson type
and a companion Bernstein type inequality and then to leverage the Sobolev type embedding theorem for Besov
spaces, as described in section 5.1.1. See [DeVore, 1998, 2009] for nice exposition with necessary details.

B.1 N-term approximation

B.1.1 Free partition splines

Consider approximating f ∈ Lp (Ω) using piecewise polynomials of order r, taken from the approximating space

ΣrN . The global approximation is S ∶=
N

∑
j=1

pj (x)χIj , j = 1,⋯,N , x ∈ Rd, and pj (x) ∈ Pr (Rd), the space of all

d-variate algebraic (real) polynomials of order r. We want to estimate the best rate of (nonlinear) approximation
σN (f)Lp(Ω) ∶= inf

S∈Σr
N

∥ f − S ∥Lp(Ω).

Unfortunately, no such characterization is known for d > 1. Part of the difficulty stems from the fact that the
growth condition for the approximating space can not be guaranteed in multivariate setting. Also, characterizing
the smoothness space via classical interpolation no longer applies since some evidence suggest that the approxi-
mation space Aαq becomes a nonlinear function space. Refer [section 6.5, DeVore, 1998] for discussion along these
lines.

In univariate set up (Ω ⊂ R), X = Lp (Ω) and taking Yr = Bατ (Lτ (Ω)), for 0 < α < r, one can prove [Ch.12,
DeVore and Lorentz, 1993] a Jackson type inequality for f ∈ Yr of the form

σN (f)Lp(Ω) ≲ N
−α∣f ∣Bατ (Lτ (Ω)), (22)

and a companion Bernstein type inequality for S ∈ ΣrN , of the form

∣S∣Bατ (Lτ (Ω))≲ Nα ∥ S ∥Lp(Ω), (23)

where
1
τ
= α + 1

p
⩾ 1. Then the ‘black box theorem’ for free knot spline guarantees

σN (f)Lp(Ω) ≲ N
−s ⇐⇒ f ∈ Asq (X ,Yr)θ,q = B

s
q (Lq (Ω)) , 1

q
= s + 1

p
, (24)

where θ ∶= s

α
and 0 < q ⩽ ∞, 0 < p < ∞. The case p = ∞ requires a different treatment as in [DeVore and

Popov, 1987]. Since q < p, the nonlinear approximation space Bsq (Lq (Ω)) is much larger than the corresponding
linear approximation space Bs∞ (Lp (Ω)), as shown in Fig. 5 for d = 1. This reveals the prowess of nonlinear
approximation in guaranteeing a desired rate N−s for less regular functions compared to linear approximation.

B.1.2 Wavelet basis

To leverage the power of nonlinear approximation for d > 1, the N -term approximation was attempted using box
splines [DeVore and Popov, 1987] but was later replaced by computationally more efficient d-dimensional wavelets
of smoothness r > 0. For details, we refer the readers to [section 7.4–7.8, DeVore, 1998]. We state here the crux
of the result.

Let Ω ⊂ Rd be a Lipschitz domain. Consider X = Lp (Ω) and Yr = Bατ (Lτ (Ω)). Then, for 0 < α < r, the
Jackson type inequality for f ∈ Yr is of the form

σwavelet
N (f)Lp(Ω) ≲ N

−α∣f ∣Bατ (Lτ (Ω)), (25)
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Figure 5: DeVore diagram showing the spaces associated with nonlinear approximation of functions in Ω ⊂ Rd. The
linear approximation space Bs∞ (Lp (Ω)) (blue circle) is characterized along the vertical line (black, dotted) while
the nonlinear approximation space Bsq (Lq (Ω)) (green circle) is characterized along (for N -term approximation)
or to the left (for adaptive approximation) of the Sobolev embedding line (red, solid) with slope d.

and a companion Bernstein type inequality for S, an N -term wavelet approximation of smoothness r, can be
written as

∣S∣Bατ (Lτ (Ω))≲ Nα ∥ S ∥Lp(Ω), (26)

where
1
τ
= α
d
+ 1
p
⩾ 1. Then the ‘black box theorem’ for multivariate wavelet approximation yields

σwavelet
N (f)Lp(Ω) ≲ N

−s/d ⇐⇒ f ∈ Asq (X ,Yr)θ,q = B
s
q (Lq (Ω)) , 1

q
= s
d
+ 1
p
, (27)

where θ ∶= s

α
and 0 < q ⩽ ∞, 1 < p < ∞. From Fig. 5, it’s evident that given a desired rate, N -term wavelets

can approximate functions which linear multivariate approximation can not. Conversely, if we desire a best rate
(denoted by ⋆) of approximation, then s⋆nonlinear ⩾ s⋆linear. Depending on how large s⋆nonlinear is compared to s⋆linear,

the best rate of approximation O (N−s⋆nonlinear/d) outperforms O (N−s⋆linear/d). Finally, note that
1
τ
= α
d
+ 1
p

is the

equation for Sobolev embedding line (solid red in Fig. 5) as described in section 5.1.1. Hence for best N -term
approximation, the characterization of the approximating space occurs along the Sobolev embedding line.

B.2 Adaptive approximation

If the nonlinear approximation of f ∈ Lp (Ω), Ω ⊂ Rd, is done by adaptively partitioning the domain in dyadic
hypercubes, and we decide to approximate each cell by an rth order polynomial, then one can prove a ‘black box
type theorem’. However, this theorem only guarantees a sufficient condition.

Let the approximating space be Σa,rN , where the superscript a stands for adaptive. Here N denotes the size of
the final partition, i.e. total number of leaf nodes if the cell division is viewed as a dyadic tree. Then the ‘black

box type theorem’ says: if f ∈ Bsγ (Lγ (Ω)) with
1
γ
< s
d
+ 1
p

, then σaN (f)Lp(Ω) ≲ N−s/d∣f ∣Bαγ (Lγ(Ω)). It is instructive

to note that the theorem requires an approximation space strictly left to the Sobolev embedding line.

Remark 9. It can be noted from Theorem 3 that for any general initial density ρ0 ∈ L1 (Ω), the nonlinear
approximation can not improve the rate of convergence attained by linear approximation for approximating the
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joint density, since we can not guarantee the existence of a Besov space on or to the left of the Sobolev embedding
line, to which the joint density must belong to.
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