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Chapter 0 
 
Motivation 
     
“A complex unity formed of many often diverse parts to a common plan or serving a common 
purpose.” 

-   Definition of ‘system’ 
         Webster Dictionary. 

 
The above quoted definition captures the current trend and future direction of system 
engineering, as mere static description of constituent units no longer describes a ‘system’. 
Today’s complex system involves multiple communicating units. Understanding such a system 
demands a closer look at the dynamic interaction between the constituent entities and their 
emergent behavior. 

Modern systems are no more continuous or discrete alone, rather a combination of them where 
some subsystems are in continuous domain, some in discrete domain and some are event-driven 
systems. Such a system of multifarious nature is often referred as a hybrid system. In particular, 
modeling and analysis of event-driven systems are beyond the scope of conventional system 
theory and need special treatment for suitable representation and analysis of such a system, 
named as discrete event dynamic system (DEDS).  

Dynamics of DEDS is often event-based, asynchronous and concurrent in nature. While event-
driven nature is itself difficult to handle, asynchrony and concurrency poses further challenge for 
modeling and analysis. Real life events take variable amount of time. Thus time, from a 
philosophical perspective, only defines a partial ordering of events. Hence any representation of 
DEDS must be able to represent asynchronous behavior of the system. Concurrency, on the 
other hand, requires a tractable and flexible theory, as there exist many conflicting views of 
concurrency. Some early models of concurrency (like interleaving model) viewed system’s 
behavior as partially ordered sequence of events over a period of time. This, however, addresses 
concurrency in an indirect manner by introducing the concept of “pseudo-concurrency”. So there 
is a need of more robust representation of true concurrency. 

 



 1

 
 
 
 
Chapter 1 
 

Introduction 
 
     
In the engineering discipline, system evolution has invariably been facing three major needs. 

(1)The need to develop increasingly complex systems. 
(2)The need to assess the system’s operational risks. 
(3)The need to have a cost competitive solution to attain these requirements. 

Due to time and money constraints, it is no longer feasible to follow the design cycle of trial and 
error prototyping. Instead, the industry is leaning more towards simulation, so that the design 
flaws can be worked out even before the prototype is built. 

It’s here Petri Net comes in. Petri net is a net-based abstraction, which can be used as a 
modeling tool (graphical and mathematical), as a simulation tool and as an analysis tool. 

As a modeling tool, it helps in system design. The graphical nature aids system visualization, 
the mathematical nature captures system behavior. 

As a simulation tool, it enables one to identify design errors. Extensive simulations may detect 
errors, which are rare and elusive. 

As an analysis tool it reveals various properties of the model and hence of the actual physical 
system. Thus, one can draw important conclusions about the system without going for 
experimentation or performing lengthy calculation of conventional system modeling. 
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Chapter 2 
 

Basic Concepts and Definitions 
 
     
2.1 Informal Introduction to Petri Nets 
 
Any system consists of a number of activities and the system can be modeled by listing the states 
of the system, before and after those activities. An activity brings the system from one state to 
another i.e. activity causes state-transition. All such state-transitions, when graphically 
represented, are called state-transition diagram.  
 
 
Example 2.1:  
 
 

 
Figure 2.1 State-transition diagram for OFF-ON transition 

 
The above state-transition diagram shows that the system undergoes a transition from OFF state 
to ON state. The activity, in this case, can be pressing of a switch. 

A closer look at Fig. 2.1 reveals that a state-transition diagram is a directed graph composed of 
two elements: nodes (representing state of the system) and arcs (representing the direction of 
state-transition). 

Pictorially nodes are represented by circles. Arcs are of two types: input arcs and output arcs. 
In Fig. 2.1, there are two nodes, representing OFF and ON state. The only arc in Fig. 2.1 is the 
output arc with respect to OFF node and input arc with respect to ON node. 

The state-transition representation, as shown above, has some serious limitations. As one can 
see in Fig. 2.1, there is no representation of the activity itself. Also, there is little or no scope to 
represent the condition (if any) for which the transition occurs (say, if the temperature is less than 
40oC then the switch is pressed to make the system move from OFF to ON state). In addition to 
that, one has to define first the system’s global state and then enumerate all the states and 
feasible events at each state. A possible consequence is the state-explosion problem for complex 
systems.  

A formalism that can overcome some of these limitations is Petri nets. It gives more modeling 
flexibility by introducing two kinds of nodes; one (called places) to represent the states and/or 
conditions and the other (called transitions) to represent the activities. It uses local states rather 
than global states, thereby avoiding the state enumeration problems in the modeling stage. It can 
explicitly represent precedence relations, conflicting situations, synchronization concepts, 
concurrent operations and mutually exclusive events. 

 
 
 

OFF ON



 3

 
Example 2.2: 

 
 
 
 
 
 
 
 
                                              
                                    

Figure 2.2 Petri net graph for OFF-ON transition 
 
The Petri net graph of Fig. 2.2 shows that when the system is in OFF state and when temperature 
is less than 40oC and when the switch is pressed then the system makes a transition from OFF 
state to ON state. A comparison of Fig. 2.1 and Fig. 2.2 shows that how Petri net graph provides 
more modeling power and flexibility over state-transition diagram. 

A closer look at Fig. 2.2 reveals that a Petri net is a directed graph composed of two elements: 
nodes (places and transitions) and arcs (input and output). 

Pictorially places are represented by circles and transitions by bars. Arcs are labeled with their 
weights (positive integers) – labels for unity weight are usually omitted. 

The nodes and arcs constitute the static structure of Petri net. The dynamic behavior of the net 
is given by ‘token game’, representing various states of the system. A particular state is a 
snapshot of the system’s behavior. The state of a place is called its marking, represented by the 
presence (condition holds) or absence (condition does not hold) of black dots, called tokens, in 
the circle representing the place. Current state of the modeled system (marking of the system) is 
given by the number and type (if tokens are distinguishable) of tokens in each place.  

While places and arcs are passive components of the net, transitions are active components. 
When all input places and no output places of a transition contain tokens, then a transition fires. 
Firing of a transition removes tokens from all of its input places and puts tokens in its output 
places. Thus, token-flow occurs via the firing of transitions. The system achieves a new marking 
via the firing of a transition. Introduction of tokens into places and their flow through transitions 
enable one to describe the discrete-event dynamics of the PN and thereby of the modeled 
system. 

 
2.2 Formal Introduction to Petri Nets 
 
Before giving formal definition of Petri net, two important points may be noted: 

(1) Some people do make a distinction between Petri net graphs (the graphical      
 representation) and Petri net structure (the mathematical structure). No such distinction is 
 made in this report. 

(2)  The Petri net was originally defined in a way that token-carrying capacity of each place 
was one. A later extension of Petri nets, called Place-Transition nets (PT nets) allowed 
multiple tokens at a place. In this report, all subsequent theories are given for PT nets, 
which are more general. Henceforth, the terms PT nets and ordinary Petri nets are 
interchangeably used. 

 
2.2.1 Definition of Petri net 
 
An Petri net, ‘ N ’ is a bipartite, weighted, directed multigraph, mathematically represented by a 
four-tuple ),,,( OITPN =  where 
 
 

OFF ON

SWITCH 

T< 40OC 
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P  = { ni pppp ,...,,...,, 21 } is a finite set of places,          Node definition            P ∩T  = Ø 

T  = { mj tttt ,...,,...,, 21 } is a finite set of transitions,                                              P UT ≠ Ø  
 
 
 I  : ( TP × ) → No

+                                                                    Arc definition           No
+ = {0,1,2,…} 

O  : ( TP × ) → No
+ 

 
The node definition says that the set of places and the set of transitions are disjoint (having no 

common elements) and there exists at least one node ( TPx ∪∈ ) in the net. The set of arcs 
( F ) defines two types of functions: input function ( I ) and output function (O ). These input-
output functions describe flow of tokens from places to transitions and from transitions to places. 
Note that F ⊆ ( TP × ) U ( PT × ). Again | P  | = n  and | T  | = m , meaning an ordinary Petri net 
has n  places and m  transitions. This notation will be used in the subsequent discussions. A 
general place element is denoted by ip  and a general transition is denoted by jt . As already 

mentioned, i  = 1,2, ….. , n  and j  = 1,2, ….. , m .  
Some authors [2] prefer to use the set of arcs ( F ) and a weight function (W ) in the Petri net 

definition instead of using input-output functions ( I and O ). In this notation, a Petri net is 
represented by a four-tuple, N  = ( WFTP ,,, ) where 
F ⊆ ( TP × ) U ( PT × ) defines flow relation, 
W  : F  → N+ is a weight function, N+ = {1, 2,3,…} 

Weight of arc is defined in the following way. If ktpI ji =),( , where 1>k is an integer, a 

directed arc from place ip  to transition jt  is drawn with the label (weight) k . If k  = 1, an 

unlabeled arc is drawn and if it happens that k  = 0 then no arc is drawn.   
 

2.2.2 Alternative definition of Petri net 
 

Note that Petri net is defined in Art 2.2.1 with two basic node elements: places and transitions. 
One can, however, define a Petri net with respect to a single node element i.e. either with respect 
to place or with respect to transition. To do that the concept of preset and postset is needed. With 
respect to transition one can define 

t• , called the preset of transition t  = set of all input places of the transition t  
•t , called the postset of transition t  = set of all output places of the transition t  

Similarly, with respect to place one can define 

p• , called the preset of place p  = set of all input transitions of the place p  
•p  , called the postset of place p = set of all output transitions of the place p  

Now one can define a Petri net with respect to  transition alone as a net tN  such that ∀ t  ∈ T , 

 t•  = { p : p ∈ P  and ),( tpI ≠ 0} and •t  = { p : p ∈ P  and ),( tpO ≠ 0} 
Following similar notation, one can define a Petri net with respect to place alone as a net 

pN such that ∀ p  ∈ P  , p•   = { t : t ∈ T  and ),( tpO ≠ 0} and 
•p  = { t : t ∈T   and ),( tpI ≠ 0} 

Unless otherwise stated, it is assumed that the Petri net has no isolated node i.e. no node 

TPx ∪∈  exists such that •• = xx = Ø. 
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2.2.3 Definition of Ordinary Petri net 
 
An Ordinary Petri net is one where all arcs are unity-weighted (and hence unlabeled), 
mathematically represented by a four-tuple ),,,( OITPN = where ∀ p ∈ P , ∀ t ∈T , ),( tpI  ≤ 1 
and ),( tpO  ≤ 1. 

It can be mentioned that ordinary and non-ordinary Petri nets have same modeling power since 
one can always represent an arc of higher weight as a set of arcs, each of unit multiplicity, the 
cardinality of the set being the weight of the arc of non-ordinary Petri net. Therefore, it is always 
possible to convert a non-ordinary Petri net into an ordinary Petri net without sacrificing generality 
but sometimes non-ordinary Petri nets are preferred due to ease of modeling.  
 
2.2.4 Definition of Marked Petri net 
   
A Marked Petri net is a five tuple ),,,,( MOITPN = where M can be viewed as a function, 

which assigns a natural number with each place, i.e. M : P  → No
+. M can also be viewed as a 

vector given by },...,,...,,{ 21 nik MMMMM = where the i th entry of M is iM , which is the 

marking of the place ip . 

   

2.2.5 Definition of Pure Petri net 
 
A Pure Petri net is one, which does not have any self-loop. It means, there exists no such place in 
the net, which is simultaneously an input place and an output place to a transition. 

 In mathematical representation, for a pure Petri net N , P ∩T = Ø i.e. set of places and set of 
transitions are mutually disjoint. Following the alternative definition of Petri net, a pure Petri net 

N must satisfy the criteria that ∀ T , { t• } = { •t } = Ø. 
 Petri nets having self-loops represent reflexive property and hence self-loop free pure Petri 

nets are also called non-reflexive Petri nets. Any impure Petri net (Petri nets having self-loops) 
can be made pure by adding appropriate dummy places and transitions to it. 
 
Example 2.3: 
            
            
            
            
            
            
            
            
            
            
            
            
            
            
The Fig. 2.3 shows how an impure Petri net (a) can be made pure (b) by suitably adding dummy 
places and transitions. 
 

 
2.2.6 Definition of Finite and Infinite Capacity Petri net 
   
An Infinite Capacity Petri net is one in which each place can accommodate unlimited number of 
tokens. 

Dummy transition 

Dummy place 

Figure 2.3: (a) Impure Petri net, (b) Pure Petri net  

(a) (b) 
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Since in a physical system, tokens signify number of resources or whether a condition is true or 
whether a process is ongoing, depending upon what the place models, practical constraints limit 
the maximum number of tokens that each place can hold. Hence, a Finite Capacity Petri net is 
defined as one where each place has a maximum token carrying capacity.  

 
2.2.7 Firing Rule 
    
A transition is said to be enabled when each one of its input places is marked with at least one 
token (This statement assumes the net to be an ordinary one, if the net is non-ordinary then for 
enabling, each input place of the transition must be marked with at least w tokens, where w is the 
weight of the input arc of that transition).  

An enabled transition may or may not fire depending on whether the event actually takes place 
or not. But once enabled, a transition has the potential to fire; hence, the transition is called 
potentially friable. 

Firing enabled transitions performs execution. The execution of a Petri net causes its marking 
to change by removing tokens from its input places and depositing into each of its output places. 
Transition firing continues as long as there exists at least one enabled transition. When there are 
no enabled transitions, the execution halts. 

In mathematical terms, a transition Tt ∈  is enabled iff )( pM ≥ ),( tpI ;∀ p ∈ P . If an 
enabled transition t  fires then it causes a change in marking from )( pM to )( pM ′ given by the 
equation: 

 )( pM ′ = ),(),()( tpOtpIpM +−  ; ∀ p ∈ P .  
  

As stated above, firing is a two-step process. First step involves removal of tokens from all input 
places and the second is depositing the tokens in the output places of the particular transition. 
The above equation clearly depicts this fact. ),( tpI− stands for the first step and 

),( tpO+ stands for the second. 
The firing rule, when applied to finite capacity Petri nets, is called Strict Firing Rule and when 

applied to infinite capacity Petri nets, is called Weak Firing Rule. Thus transition enabling 
condition for finite capacity nets has an additional restriction that the number of tokens in each 
output place of the transition can not exceed the maximum token carrying capacity )( pC . 

 
Theorem: Any pure finite capacity Petri net (where strict firing rule is applicable) can be 

transformed into a corresponding pure Petri net, where weak firing rule is applicable. 
 
Thus one can apply weak firing rule for both finite and infinite capacity nets. Note that the 

theorem is stated with an additional constraint that the net has to be pure. As already mentioned 
in Art 2.2.5 this constraint can always be relaxed by making an impure Petri net pure.  

 
Corollary: Weak firing rule can be applied to all Petri nets irrespective of capacity constraint and 

purity constraint.  
 
The transformation which converts a finite capacity net ),( 0MN , where strict firing rule is 

applicable to a corresponding Petri net ),( 0MN ′′ , where weak firing rule is applicable, is called 
Complementary-Place Transformation. The procedure for obtaining the transformation is given by 
the following two steps: 

 
Step 1: Add a complementary place p′ for each place p , where the initial marking of p′ is  

)()( 00 pMpCM −=′ . 
 
Step 2: Between each transition t and a subset of complementary places ( p′ ), new arcs ( pt ′, ) 

and/or ( tp ,′ ) (input and/or output) are drawn such that ),(),( tpwptw =′  and 
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),(),( ptwtpw =′ ; this ensures that the sum of tokens in place and in its complementary 
place p′ equals its capacity )( pC for each place p , before and after the transition t .  

 
 
Example 2.4   
 
The net in Fig. 2.4(a) is a finite capacity net where strict transition rule is applicable. At the initial 
marking (1 0), the only enabled transition is 1t  . After 1t  fires, new marking becomes (2 0), where 

2t and 3t  are enabled. If 2t  fires then next marking becomes (0 0) and if 3t  fires then the next marking 

becomes (0 1). Continuing this process one can obtain the reachability graph of the PN as shown 
in Fig. 2.4 (c) (reachability trees and graphs are introduced in Chapter 5). Using Complementary-
place transformation one can transform the net in Fig. 2.4(a) to the one in Fig. 2.4(b) which have 
the same reachability graph Fig. 2.4(c). The first step for the transformation is to introduce two 
complementary places 1p′  and 2p′  with initial markings )( 10 pM ′′ = )()( 101 pMpC − = 2 – 1 = 1. 
In the next step, new arcs are added between each transition t  and some complementary 
places, so as to keep the sum of tokens in each place-complementary place pair constant, the 
value of this constant being capacityC  of the place. For example, since ),( 11 ptw = 1, 

),( 11 tpw ′ = 1. Similarly, ),( 13 ptw ′  = ),( 31 tpw = 2 and ),( 32 tpw ′ = ),( 23 ptw = 1, since firing 3t  

removes 2 tokens from the place p1 and adds 1 token in 2p . Hence a 2-weighted arc is drawn 

from 3t  to 1p′  and unity-weighted arc is drawn from 2p′  to 3t . Similarly other additional arcs are 
drawn to convert the finite capacity net an infinite capacity one. It can be verified that both the 
nets in Fig. 2.4 have isomorphic reachability graphs. 
                
 
 
 

 
 
 

 
 

p2 p1

      t1 

t1 

p2 

p1 p′1 

1 0

2 0

0 10 0 

1 1

2 1

(a) (b) 

(c) 

      t1 
      t1 

t2 
t4 

t4       t1 

      t1 

t2 

t4 

t3 

C (p1) = 2 C (p2) = 1 
t4 t3 

t2 
t2 

p′2

t4 
2 

2 2 
2 

2 

Figure 2.4: (a) Finite-capacity Petri net, (b) Infinite Capacity Petri net after complementary-place transformation,  
(c) The Complementary-place transformation preserves the reachability graph 

2 

t3 
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Chapter 3 
 

Modeling with Petri Nets 
 
     
3.1 Petri Nets as Modeling Formalism 
 
Modeling a hybrid system has been attempted from many different perspectives. A hybrid system 
consists of some continuous functional relations, some discrete signals and some event driven 
occurrences. Some attempts have gone to model the entire system in continuous domain by 
making some simplified assumptions; some have attempted to model the system entirely in 
discrete domain by discretizing the continuous domain by some suitable assumptions. Of course, 
all these attempts produce results at the expense of losing information about the system due to 
modeling assumptions. Petri net is an efficient modeling tool for modeling hybrid system since it 
can inherently capture DEDS and properties like concurrency, asynchronous behavior, non-
determinism are intrinsic to Petri nets. This chapter introduces Petri net as a modeling tool and 
explains how efficiently it can express uncertain and hybrid nature of complex systems. 
 
3.2 Basic Modeling Constructs 
 
In this section, some basic situations are taken which are encountered often during modeling a 
physical system. This section describes how Petri net handles these real life modeling situations, 
thus revealing the modeling power and ease of representation of Petri nets. 
 
3.2.1 Sequential execution 
 
Sequential execution poses a precedence constraint among the activities (transitions). In Fig 3.1 
transition t2 can fire only after the firing of t1. 
 
  
   
 
 
 
 
 
 
 
 
 

t2 t1 

Figure 3.1: Transition t1 occurs first and then transition t2 occurs 

p1 p2 p3 
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3.2.2 Synchronization 
 
Petri nets can successfully capture the synchronization mechanism in the modeling phase. In Fig 
3.2 transition t1 will fire only when the empty input place gets a token. Thus, the three input places 
of t1 are synchronized for the firing of transition t1. 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.3 Conflict 
 
In Fig 3.3 transitions t1, t2 and t3 are in conflict. All three transitions are enabled but only one can 
fire at a time. Hence, choice has to be made regarding which transition will be fired. Firing one will 
lead to the disabling of other transitions. The conflict is resolved in a non-deterministic way (e.g. 
by assigning appropriate probabilities to the conflicting transitions).  
 
 
 
 
 
 
 
 
 
 
 
3.2.4 Concurrency 
 
In Fig. 3.4 transitions t1, t2 and t3 are concurrent. Concurrency is characterized by the existence 
of a forking transition that deposits tokens simultaneously in two or more output places. In Fig 3.4 
t0 is the forking transition. 
        
 
 
 
 
 
 
 
 
 
 

Petri pointed out that concurrency can be thought of as a binary relation which has: 
(1) Reflexive property (event A is concurrent with itself), 
(2) Symmetric property (event A and event B are concurrent implies event B and event A are    
concurrent). 

t1 

      t1 t2 t3 

      t1 t2 t3 

      t0 

Figure 3.2: Transition t1 fires when the place p2 gets a token so that all the input places of transition t1 have tokens 

p1 p2 p3 

p4 p5 

p1

Figure 3.3: Transitions t1, t2 and t3 are in conflict 

Figure 3.4: Transitions t1, t2 and t3 are concurrent  

p1
p2 p3 
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But concurrency does not have transitive property (event A and event B are concurrent, event B 
and event C are concurrent togetherly, in general, does not imply event A and event C are 
concurrent. Of course, this may happen in some special cases. Example: Zeroth Law of 
Thermodynamics).  
 
3.2.5 Confusion 
 
Confusion occurs when conflict and concurrency co-exist. In such a situation, it is not clear that 
whether a conflict is needed to be resolved or not, in going to the new state (marking). In Fig 3.5 
transitions t1 and t3 are concurrent whereas transitions t1 and t2 are in conflict. Also t2 and t3 are in 
conflict. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Confusions can be of two types: Symmetric Confusion and Asymmetric Confusion. Fig 3.6 (a) 
shows Symmetric Confusion where t1 and t3 are concurrent (both enabled and firable) and at the 
same time they are in conflict with t2. 

In Fig 3.6 (b), t1 and t2 are concurrent and if t1 fires first, then t3 and t2 will be in conflict. This 
situation is called Asymmetric Confusion. Asymmetric confusion occurs when one place feeds to 
a set of transitions via output arcs from it and there exists another place in the net which feeds to 
a subset of those transitions. In Fig 3.6 (b) the place p2 feeds to a set of transitions {t2, t3} via 
output arcs from p2 and there exists a place p3 in the net which feeds to {t3} ⊆ {t2, t3}.  

      t1 t2 t3 

p1
p2 

p3 

t4 

Figure 3.5: Transitions t1, t2  and t2, t3 are in conflict but t1, t3 are concurrent 

p1

p2 

      t1 

t2 

t3 

p1

p2 

      t1 

t2 

p3 

t3 

p5

p4

(a) (b) 

Figure 3.6: (a) Symmetric Confusion (b) Asymmetric Confusion 
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3.3 Primitives for Programming Constructs 
 
This section describes basic programming constructs in Petri net formalism. This, in turn, will 
express the modeling power of Petri nets and these constructs will be used in subsequent 
modeling examples. 
 
3.3.1 Selection (if – else) 
 
(a) If condition A then do activity X, else do activity Y. 

 
 
 
 
 
 
(b) If condition A and condition B hold, then do activity X. 

 
 
 
 
 
 
 
 
3.3.2 Case (Switch) statement 
 
If Case A do activity P, if Case B do activity Q, if Case C do activity R, if Case D do activity S.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9: Switch statement 

Figure 3.8: If – else with and operator 

Figure 3.7: If – else condition 

A 
X 

Y 

X 

A 

B 

A B C D 

P Q R S 



 12

 
3.3.3 While loop 
 
While condition A holds, do activity X.  

 
 
 
 
 
 
 
3.3.4 Repeat (for) loop 
 
For condition A, do activity X. 

 
 
 
 
 
 
 
 
 
3.3.5 Precedence 
 
Activity X should precede activity Y. 

 
 
 
 
 
 
 
3.3.6 Timed occurrence 
 
After k seconds do activity X 
 

 
 
 

Figure 3.10: While loop 

Figure 3.11: For loop 

Figure 3.12: Precedence relation

Figure 3.13: Timed transition 

A 

X 

A X Null 

X 

Y 

X 

k 
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3.3.7 Either – or (Mutual exclusion) 
 
(a) Either do activity X or do activity Y.  

 
 
 
 
 
 
 
 
 
 
 
(b) Either do activity X or do activity Y with preference to activity X (preferential either - or) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.14: Either – or statement 

Figure 3.15: Preferential either – or statement 

X 

Y 

X 

Y 
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Chapter 4 
 

Sub-structures of Petri Nets 
 
     
4.1 Importance of sub- structures 
 
Modeling and analyzing a Petri net as it is, often becomes cumbersome and tedious job because 
even for a physical system with modest complexity, the Petri net size becomes unmanageable 
and analyzing the model becomes a daunting task. Hence it may be helpful if one can identify 
some sub-structures in the entire large Petri net and then model and analyze those substructures; 
in that case it becomes a simpler problem. Moreover if certain properties can be established for 
these sub-structures then identifying one such sub-structure will immediately allow one to assign 
those properties without any analysis. Last but not the least, if certain properties can be shown to 
be preserved by these sub-structures then those properties will also hold for the composition of 
them i.e. for the original Petri net. This justifies the study of sub-structures of a Petri net.  
 
4.2 Sub-structures of Petri nets 
 
4.2.1 Source and sink 
 
A Source Place is a place that has no input transition i.e. it has no input arcs, only output arcs 
emanate from a source place. A Sink Place is one that has no output transition i.e. it has no 
output arcs, only input arcs converge to a sink place.   

Similarly, a Source Transition is a transition that has no input place i.e. it has no input arcs, only 
output arcs emanate from a source transition. A Sink Transition is one that has no output place 
i.e. it has no output arcs, only input arcs converge to a sink transition.  

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.1: (a) source place, (b) sink place, (c) source transition, (d) sink transition 

(a) (b) (c) (d) 
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Fig 4.1 (a) and (b) shows source and sink places respectively while (c) and (d) shows source and 
sink transitions respectively. Mathematically, • p = ∅ represents a source place, p • = ∅ represents 
a sink place, • t = ∅ represents a source transition and t • = ∅ represents a sink transition. 
 
4.2.2 Directed path (DP) 
 
A Directed path (DP) is a path formed by a finite sequence of (not necessarily distinct) places and 
transitions, present in the Petri net. 
 
Example 4.1 
 
Ina general Petri net (n places and m transitions) p1, t2, t1, p3, p8, t2, t4 can be a directed path 
(DP). Note that a DP need not contain a sequence where places and transitions are alternative 
elements.  
 
 4.2.3 Simple Directed path (SDP) 

 
A simple directed path of a PN, N is a sequence of transitions and places given by:  
Θ  = rr tptpt ...110 ; containing no place or transition more than once such that  
 

0),(1),(),([;,...,2,1 1 =∧===∀ − tpItpOtpIri iiiii  

if 0),( =∧≠ tpOtt ii if 0),(1 =∧≠ − ii tpItt  

if 0),( 1 =∧≠ −ii tpOpp if ipp ≠ ] 
Note that a single transition can be considered as a SDP with no places. 
 

4.2.4 Looping of paths (LOP) 
 
Given a Petri Net N, and k SDPs irioi tti ...=Θ ),...,1( ki =  , the k paths are said to be looped in 

N if )],(),()(1),(),([|),...,1(, 00 iriiirii tpOtpIpptpOtpIkiPp ′=′≠′∀∧===∀∈∃   
In simple terms, the k-paths are looped if the input (output) transitions of all paths input from 

(output to) the same place p with a single arc [3]. 
 

4.2.5 Directed circuit (DC) 
 
A Directed circuit (DC) is a closed directed path i.e. DC is a DP from one node (place or 
transition) back to itself.     
 
Example 4.2 
 
Ina general Petri net (n places and m transitions) p1, t2, t1, p3, p8, t4, p1 can be a directed circuit 
(DC).   
 
4.2.6 Pure Directed path (PDP) 
 
A Pure Directed Path (PDP) is a directed path (DP) such that each place in the DP has exactly 
one input and one output transition, and each transition in the DP has exactly one input and one 
output place except starting or ending ones (place or transition).  

Mathematically PDP is a DP such that other than a starting or ending node, 
1|}{||}{||}{||}{|,, 11 =•=•=•=•∈∀∈∀ ttppTtPp ; where P1 and T1 are the sets of places and 

transitions in the directed graph [5]. 
This means that, the Petri net might have places which have multiple input and/or output 

transitions; and/or the net might have transitions which have multiple input and/or output places. 
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But when the DP contains no such nodes which have multiple input and/or output nodes (of other 
type; recall a Petri net has two kinds of nodes – places and transitions); then only a DP is called a 
PDP. So a PDP is a very special kind of DP. 
 
4.2.7 Pure Directed circuit (PDC) 
 
A Pure Directed Circuit (PDC) is a directed circuit (DC) such that each place in the DC has 
exactly one input and one output transition, and each transition in the DC has exactly one input 
and one output place. 

Mathematically PDP is a DP such that 1|}{||}{||}{||}{|,, 11 =•=•=•=•∈∀∈∀ ttppTtPp ; 
where P1 and T1 are the sets of places and transitions in the directed graph.  

This means that, the Petri net might have places which have multiple input and/or output 
transitions; and/or the net might have transitions which have multiple input and/or output places. 
But when the DC contains no such nodes which have multiple input and/or output nodes (of other 
type; recall a Petri net has two kinds of nodes – places and transitions); then only a DC is called a 
PDC. So a PDC is a very special kind of DC. 

 
Note that the concept of path and circuit are borrowed from graph theory. In the formal 

definition of Petri net (Art 2.2.1), it was stated that Petri net is a bipartite, weighted, directed 
multigraph. The meaning of this sentence can be made clear now. A graph has only two 
elements: vertices and edges. A graph is called bipartite when its vertices can be grouped into 
two subgroups. In Petri graph context the vertices are comparable to nodes which can be 
grouped into two subgroups: places and transitions. Since Petri graph contains weighted and 
directed arcs, it is a weighted and directed graph. Petri graph is called a multigraph since multiple 
arcs can be drawn from one node to another. In a directed graph, a path is a finite sequence of 
edges neee ,...,, 21 where nivvei ii ,...,3,2,1);,( 1 == − . A path is called simple if all of its edges 
are distinct and is called elementary if all of its vertices are distinct (which implies edges are also 
distinct). A path is said to be open if nvv ≠0 and closed if nvv =0 . A closed path is called a 
circuit. Just like simple and elementary path, a simple circuit means all edges are distinct and an 
elementary circuit means all vertices are distinct (except of course, the first and last, which 
coincide). The length of a path or circuit is the number of edges in it. These basic notions of graph 
theory are introduced here in order to clarify the origin and significance of terms introduced in Art 
4.1. This allows one to apply the concepts of simple and elementary paths and circuits in Petri 
graph context. As it will be evident in the subsequent part of this report, some more concepts will 
be taken from graph theory to draw important conclusions about Petri net. 
 
4.2.8 Subnet (SN) 
 
A subnet (SN) of a PN, N = (P, T, I, O) is another PN, N1 = (P1, T1, I1, O1) such that P1⊆ P, 
T1⊆T and I1 and O1 are simply I and O projected onto (P1 x T1). Mathematically I1 and O1 are 
given as follows: 
      I1: (P1 x T1) → No

+                                                                                     

    O1: (P1x T1) → No
+ 

 

Following the alternative definition of PN, a subnet N1 = (P1, T1, F1, W1) of the original Petri 
net N = (P, T, F, W) satisfies that, P1⊆ P, T1⊆T, F1 = F∩(( P1 x T1)∪(T1 x P1)), where F and F1 
are the set of arcs of N and N1 respectively. Arc weights are represented by the weight functions 
W and W1 respectively.   

If a subnet of a Petri net is defined with initial marking M0= m0, in that case M0
1 = m01⊆M0 = m0.  

For a general marked PN and subnet of that, M1⊆ M. 
  The above discussion essentially means, subnet is a subset of elements of the original PN, with 
all arcs between those nodes in the subset intact and no other arcs present. A large PN is nothing 
but a composition of smaller component subnets. Since subnets of a PN are themselves distinct 
Petri nets, subnets can not share places [4]. 
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4.2.9 P-Subnet (PSN) 
 
A subnet (SN), N1 of a PN, N is called a Place subnet or P-subnet (PSN), iff T1= •∪• }{}{ 11 PP . 
 
4.2.10 T-Subnet (TSN) 
 
A subnet (SN), N1 of a PN, N is called a Transition subnet or T-subnet (TSN), iff 
P1= •∪• }{}{ 11 TT . 
 
4.2.11 RP-Subnet (RPSN) 
 
A P-subnet (P1, T1, I1, O1) is called a Restricted P-subnet (RPSN) if •=•= }{}{ 111 PPT .  

The notion of RPSN was first introduced by V. K. Agrawal in 1986 [5]. The importance of this 
class of subnet lies in computing invariants, which will be discussed later in this report. 
  
4.2.12 Dual net 
 
The Dual of a PN, N = (P, T, I, O) is given by )ˆ,ˆ,ˆ,ˆ(ˆ OITPN = where 

OIPTTP === ˆ,ˆ,ˆ and IO =ˆ . . 
Intuitively, the dual of a PN results when its places are changed to transitions and transitions 

are changed to places. 
 

Theorem:  The dual of an unmarked PN is also an unmarked PN. 
 

Proof: Say the original unmarked PN is given by N = (P, T, I, O). From the definition of dual, 
)ˆ,ˆ,ˆ,ˆ(ˆ OITPN =  , the dual of N, is a four tuple.  

Since N was an unmarked net, neither T nor P contain any unconnected elements, so neither 
do TP =ˆ or PT =ˆ . Hence, M̂ is an unmarked net. 

 
Theorem:  The dual of a dual net is original Petri net. 
 
Proof: This is obvious, by repeated application of the definition of Dual. 

 
Theorem:  If an unmarked PN is the subnet of other iff dual of first is the subnet of dual of second. 
 
Proof: Say the first PN is given by N = (P, T, I, O). Given that, N is the subnet of another PN, 

),,,( OITPN ′′′′=′ i.e. .NN ′⊆ Now by the definition of subnet, TTPP ′⊆′⊆ , ; I and O are 
I ′ and O′  projected onto )( TP ′×′ . 

The definition of dual means that  
 PP ′⊆ ˆˆ     [Since TP =ˆ and TP ′=′ˆ ]; TT ′⊆ ˆˆ    [Since PT =ˆ and PT ′=′ˆ ] 
 

Again, Î is a projection of I ′ˆ [since OI =ˆ and OI ′=′ˆ ] 

              Ô is a projection of O′ˆ  [since IO =ˆ and IO ′=′ˆ ] 

And thus N̂ is a subnet of N ′ˆ . 

Since the dual of N̂ is N (from Theorem 3), the above argument with N̂ for N gives the reverse 
implication. This completes the proof. 
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If dual is thought of as an operation instead of a sub-structure, the above three theorems can be 
summarized as follows: the dual operation preserves the unmarked, dual and subnet properties. 
    
4.3 Other important Petri net structures 
 
Below mentioned are some important definitions on Petri net structures. The idea behind 
grouping them separately is that they are not sub-structures of a Petri net. This section introduces 
the concepts of composition of nets which is a super-structure of nets, projection of nets which is 
a transformed structure of nets, connectivity and strong connectivity of nets which is a special 
structure of nets and synchronic distance which is a special measurement structure for transitions 
of nets. 
 
4.3.1 Composition of Petri nets and Composed PN 
 
The composition operation can be thought of set theoretic analogue of union. So the problem is 
how to unite two or more Petri nets to get a single PN, called Composed PN. 

Given two nets ),,,( 11111 OITPN = and ),,,( 22222 OITPN = with initial marking 10m and 20m . 

Let, },...,,{ 21 kθθθ=Θ is a set of simple paths present in both the nets. 

Let’s assume, =∈Θ∈∃∩ ]})[(|{\21 θθ ppPP ∅ and =∈Θ∈∃∩ ]})[(|{\21 θθ ttTT  ∅. 

Let’s also assume that )]()()[( 201021 pmpmPPp =∩∈∀ . 

The Concurrent Composition of 1N and 2N is the net ),,,( OITPN = with initial marking 0m . 

Where, ;; 2121 TTTPPP ∪=∪=  

),(),( tpItpI i= If ]})[2,1{( ii TtPpi ∈∧∈∈∃  
    = 0 otherwise. 

),(),( tpOtpO i= If ]})[2,1{( ii TtPpi ∈∧∈∈∃  
     = 0 otherwise. 

)()( 100 pmpm = If 1Pp ∈  

    = )(20 pm otherwise. 

The composed net N  is denoted as 21 || NNN = . 
   
4.3.2 Projection of Petri nets and Projected PN 
  
Let N be a composed net: nNNNNN ||...|||||| 321= and let m be a marking. Let σρbe a firing 
count vector (will be defined in Chapter 5) and let σ be a firing sequence (will be defined in 
Chapter 5) defined onσρ . 

The projection of m over iN , denoted as )(miπ , is the vector obtained from m by removing all 

the components associated to the places not present in iN . 

The projection of σρover iN , denoted as )(σπ ρ
i , is the vector obtained byσρ , removing all the 

components associated to transitions not present in iN . 

The projection of σ  over iN , denoted as )(σπ i , is the firing sequence obtained byσ , 

removing all the transitions not present in iN .   
It follows that, 
 (1) N generates the string σ  sequencing from 0m to m . 

  (2) iN  generates )(σπ i  sequencing from )( 0miπ to )(miπ . 
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4.3.3 Inverse of a PN or Reversed PN 
  
Inverse of a PN or Reversed PN is defined as one which results if the direction of each arc is 
reversed in the original Petri net.  

Thus 1−N is obtained from N  by reversing all arc directions of N . Mathematically, if 
),,,( OITPN = then by definition 1−N ),,,( 11 −−= OITP where OI =−1 and IO =−1 . 

Following the alternative definition of PN, ),,,( WFTPN = and ),,,(1 1 WFTPN −=− . Note 
that in the inverse PN, the places and transitions are kept intact. Only the arc direction reverses. 
This is the basic difference between reversed net and dual net. In the later, as defined earlier, in 
addition to arc direction reversal, places and transitions are also swapped. 

    
4.3.4 Connectivity and Strong Connectivity 
 
Before giving formal definition of PN connectivity, it is worthwhile to look into the origin of this 
concept in graph theory. A directed graph is called connected if its corresponding undirected 
graph (formed from the directed graph by removing its edge arrows) is connected. An undirected 
graph is connected if there exists at least one path between any two vertices. 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
A directed graph (often called digraph) is strongly connected if for every two vertices 
ba, ∈ V (set of vertices), there is a path from a  to b  and a path from b  to a  as well. 
A PN is said to be connected if there exists at least one path between any two nodes (of 

course, the two nodes have to be transition-place doublet as no path can exist between two 
transitions or two paths). 

Mathematically a PN is said to be connected if ∃  a path between any arbitrarily chosen place-
transition pair ),( ji tp . A PN is said to be strongly connected if ∃  reversible paths between any 

arbitrarily chosen place-transition pair ),( ji tp  . 
    

4.3.5 Traps and Siphons 
 

4.3.5.1 Traps 
 
A Trap is a state of places in a PN, such that such that every transition that inputs from one of 
these places, also outputs to one of these places [9]. 

Formally, a non-empty subset of places Q in a PN, is called a trap if QQ •⊆• , i.e. every 
transition having an input place in Q has an output place in Q [2]. 
 
 
 

a 

b 

c 

d 

e 

f 

Figure 4.2: Unconnected graphs [12] 
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Example 4.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 4.3 the three places shown, form a trap. From the figure, }{ 1tQ =• ; },{ 21 ttQ =• ; 

QQ •⊆• . Token count in this trap remains the same by firing 1t but increases by firing 2t . 
 
 
4.3.5.2 Siphons 
 
A Siphon (or Deadlock) is a set of places in a PN, such that every transition that outputs to one of 
these places also inputs from one of these places [9]. 

Formally, a non-empty subset of places S  in a PN, is called a siphon if •⊆• SS , i.e. every 
transition having an output place in S has an input place in S [2].    
 
 
 
Example 4.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 4.3 the three places shown form a trap. From the figure, }{ 1tS =• ; },{ 21 ttS =• ; 

•⊆• SS . Token count in this siphon remains the same by firing 1t but decreases by firing 2t .    
   
Table 4.1 provides a quick overview of the properties of traps and siphons. 
 

S 

Q 

      t1 t2 

Figure 4.3: Traps 

Figure 4.4: Siphons 

      t1 t2 
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Properties 

 
Trap 

 
Siphon 

 
 
 

Behavioral 
property 

By definition, once a place in a trap 
has a token, there will always be a 
token in at least one of the places 
in the trap. Hence, a trap having at 
least one token can never lose all 
of its tokens. In other words, if a 
trap is marked under some 
marking, it remains marked under 
each successor marking.  

By definition, once all places in a 
siphon have no token, there will never 
be a token in any one of the places in 
the siphon. Hence, a siphon having 
lost all of its tokens can never obtain a 
token again. In other words, if a 
siphon is token-free under some 
marking, then it remains token-free 
under each successor marking. 

Union Union of two traps is again a trap 
[2]. 

Union of two siphons is again a 
siphon [2]. 

 
Nominal or Basic 

A trap is called a basic trap or 
nominal trap if it can not be 
represented as a union of other 
traps. 

A siphon is called a basic siphon or 
nominal siphon if it can not be 
represented as a union of other 
siphons. 

Minimal A trap is said to be minimal if it 
does not contain any other trap.  

A siphon is said to be minimal if it 
does not contain any other siphon. 

 
 
 
 
Theorem: All minimal traps (siphons) are basic traps (siphons) but not all basic traps (siphons)         

are minimal. 
Theorem: A subset of places in the reversed net 1−N will be a siphon (trap) iff it is a trap (siphon) 

in the original net N . 
 
Theorem: Traps and siphons are duals of each other. 
 
 
 
 
Example 4.5 
 
 
 
 

 
 
 
 
 
 
 
 

Table 4.1: Properties of traps and siphons 

Figure 4.5: Example of traps and siphons 

p1

p2 

      t1 

t2 

p3 

t3 

p4

t4 
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Let },,{ 3211 pppS = ; },,{ 4212 pppS = ; },,,{ 43213 ppppS = ; },{ 324 ppS =  and 

},,{ 4325 pppS = .Then, one can verify that },,,{},,{ 432114211 ttttStttS =•⊆=• .Thus 1S is a 

siphon. Again },,{},{ 4214414 tttSttS =•⊆=• . Thus 4S  is a trap. Similarly it can be shown that 

2S is a siphon, 3S is both a siphon and a trap and 5S is a trap. Also, 1S and 2S are both minimal 

and basic siphons. 3S , 4S and 5S are basic traps, 3S and 5S are not minimal traps. 
 
4.3.5.3 TC and SC net 
 
A PN in which the set of places in every directed circuit (DC) is a trap (siphon), is called a Trap-
circuit net (Siphon-circuit net) or TC (SC) net.  
 
4.3.5.4 TCC and SCC net 
 
A PN in which the set of places in every directed circuit (DC) contains a trap (siphon) is called 
TCC (SCC) net. 
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Chapter 5 
 

Analysis of Petri Nets 
 
 
5.1 Importance of analysis 
 
The objective of using Petri nets in system study is to draw important conclusions about the 
system without going for time and cost ineffective trial and error prototyping. To do so, the first 
step is to model the system. Once a model is ready, the next task is to analyze the model to draw 
conclusions about the properties of the model and hence about the actual system. Then only one 
can answer questions like what the system behavior is supposed to be under specific operational 
conditions, what properties are inherent to the structure of the net, what to expect and what not to 
expect from the system during operation and whether there is any pitfall in the system design 
which must be avoided in operational phase.  

The first step i.e. modeling has been addressed in Chapter 3.  This chapter deals with analysis 
of the modeled system. Chapter 4 serves as a link between Chapter 3 and Chapter 5, since 
dealing with substructures eases both modeling and analysis.   

It is worthwhile to mention that some authors prefer to discuss PN properties and PN analysis 
separately. This approach may seem more systematic but in the process it can only introduce 
behavioral properties, because definition and understanding of structural properties are so closely 
related to structural analysis that they can not be discussed separately. Keeping this in mind, this 
report discusses the properties and analysis techniques together to emphasize the fact that 
analysis is more than a mere tool, the analysis methods themselves reveal elegance of PN model 
and its properties. 
 
5.2 Analysis approaches 

 
There are three major approaches for PN analysis:(1) Behavioral approach, which is a tree based 
approach, (2) Structural approach, which is a matrix based approach and (3) Reduction or 
Refinement approach, which is a net simplification approach. These three approaches are 
discussed here. 
 
5.2.1 Behavioral approach 
 
This approach deals with the behavioral properties of PN. Behavioral properties are those which 
are dependent on the initial marking. In the following discussion, behavioral properties are treated 
in detail. Then effort has been given to make conclusions about them from analysis.  

 
5.2.1.1 Reachability 
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The Reachability Problem is stated as follows. Given a Petri net, given an initial marking 0m , 

given another marking rm ; the question is whether there exists a sequential firing of transitions 

which will bring the net from 0m  to rm . If the answer is 'yes', then rm is said to be Reachable 

from 0m .The set of all possible markings reachable from 0m , is called the Reachability Set, 

denoted by the symbol R( 0m ) for a given PN. Note that reachability set is defined for a given PN, 

for a given initial marking 0m . This dependency on initial marking clearly reveals that reachability 
is a behavioral property.  

It may happen that rm is reached from 0m  by the firing of a single transition, in that case rm  is 

said to be immediately reachable from 0m . In the general case, rm  is reached via the sequential 

firing of r  transitions, called the firing sequence, denoted by
rjjjr ttt ...

21
=σ ; where ],1[ mr ∈ , 

m  being the total number of transitions present in the PN. This means that firing sequence 

rσ contains an ordered string of transitions, the length of the string being equal to r . Note that 

the transition string defining firing sequence may contain repetition. Symbolically, 0m   rσ     rm  . 

The fact that rm  is reachable from 0m  via rσ , is sometimes represented [14] by the notation 

0m [ rσ > rm . For a given PN, the set of all possible firing sequences from initial marking 0m  is 

denoted by ),( 0mNL  or simply )( 0mL .  
 
Example 5.1 
 
Suppose a PN has total 7 transitions )7( =m . Let there exists a firing sequence of length 

4 )4( =r , which brings the PN from an initial marking 0m (given) to another marking 4m (given). 

This firing sequence which brings 0m  to 4m  is given by 4σ = 3231 tttt  implying 

2,3,1 321 === jjj  and 34 =j . Symbolically, 0m  4σ  4m . In alternative notation,  

0m [ 4σ > 4m . 
 

With every firing sequence rσ , there exists an associated )1( ×m Firing Count Vector, which is 

a column vector (single column, multiple rows), rσρ  whose elements correspond to number of 

times that particular transition has fired in that firing sequence rσ . Since this vector keeps a count 
of the number of times a particular transition gets fired in a particular firing sequence, hence the 
term Firing Count Vector.  
 
Example 5.2  
 
In the previous example, corresponding to the firing sequence 4σ = 3231 tttt , there exists an 

associated (7 x 1) Firing vector 4σρ  , which is a column vector, given by 4σρ = T)1120000( , which 

means 1t has fired only once, 2t once, 3t twice and 7654 ,,, tttt never, in that firing sequence 4σ .  
 
With the above understanding of firing count vector, now one can formally represent Firing 

Count vector as rσρ = T
mnnnn )....( 321 ; where kn refers to the number of firings of kt .  

A somewhat subtle point is to be noted here. It was mentioned that with every firing sequence 
there exists an associated firing count vector. But this is not a one-to-one mapping, in the sense 
that, given a firing count vector, there exists more than one firing sequences. The reason of this is 
that firing sequence gives very precise information about which transitions are fired, how many 
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times they are fired and in which order; whereas firing count vector tells which transitions are fired 
and how many times they are fired – it does not talk about the order of firing. For the firing count 
vector rσρ = T

mnnnn )....( 321 , there exists a total of SN  firing sequences where SN is given by: 

SN  = 
]!!...![

]!...[

21

21

m

m
nnn

nnn +++
= 

∏

∑

=

=
m

i
i

m

i
i

n

n

1

1

)!(

)!(
 

 
Example 5.3 
 
In the previous example, corresponding to the firing vector 4σρ = T)1120000( , one can associate a 

total of SN = 
]!2!1!1[

]!211[ ++
=12 firing sequences, 4σ = 3231 tttt being one among those twelve. 

 
With all these definitions above, it is better to have a fresh look at the reachability problem. 

Equivalent to the earlier definition of reachability problem, one can give an alternative definition of 
Reachability Problem as one, where given a PN with marking m , given a marking m′ , it is 
needed to determine whether m′ )(mR∈ . A related problem which is slightly more general, is the 

Coverability Problem, defined as, given a PN with initial marking 0m , given a marking m′ , is 

there a reachable marking )( 0mRm ∈′′ , such that m ′′ covers m′ ? In order to answer these 
questions, it is required to exhaustively enumerate all the possible reachable marking by firing the 
enabled transitions one by one, starting with an initial marking. After each firing one will reach a 
new state (marking). When all the reachable states (markings) have been enumerated, then one 
can search for the desired state (marking). If it is present, then one can say that, the desired state 
(marking) is reachable from the initial marking by the PN. This process results in a tree 
representation of the markings. Each node of the tree represents marking generated by its parent 
marking and each arc represents a transition firing, which transforms one marking to another. 
Such a tree is called a Reachability Tree, ),( 0mNTT = .  

 
Example 5.4 
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        )0010(1 =Tm             )0001(2 =Tm  
 
 
 
 
          
 

p1 p2 

      t1 

t2 
p3 

t3 
p4

      t1 

t2 t3 

Figure 5.1: (a) Petri net graph, (b) reachability tree for (a) 

(a) (b) 
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In Fig. 5.1 a PN and its reachability tree is shown. It can be noted that transitions are marked 
along the arcs of the tree and conflict ( 32tt ) can be effectively represented in the tree as shown.  
 

It is, however, very much possible that the Reachability Tree could grow indefinitely. To 
circumvent this problem, the concept of 'pseudo-infinity' is introduced, so that the tree size can be 
kept finite. 'Pseudo-infinity', as the name suggests, can be thought of as a finite representation of 
infinity. 'Pseudo-infinity' is denoted by the symbol ω which is subject to the following 
properties:ω a> ,ω ≥ ω, ω =± a ω; where a  is any integer. 

With the above concept of 'pseudo-infinity'(ω) one can always keep the tree finite. When the 
(ω) symbol is absent (truly finite size tree), then the term Reachability Tree is used. If, however, 
the (ω) symbol is present (truly infinite size tree, represented as finite size tree by introducingω) 
then the term Coverability tree is used. This means the term Coverability Tree is more general. 
When there is no (ω) symbol present then the terms Reachability Tree and Coverability Tree are 
synonymous. Otherwise the term Coverability Tree should be used.  

 Now the question is, given a PN ),( 0mN , how to construct the coverability tree. The 
following algorithm [2] is used for this purpose. 
 
Algorithm:  
  
Step 1: Label the initial marking 0m  as the 'root' and tag it 'new'. 
Step 2: While 'new' markings exist, do the following: 
 Step 2.1: Select a new marking m ; 
 Step 2.2: If no transitions are enabled at m , then tag as m 'dead-end'; 

Step 2.3: If m is identical to a marking on the path from the 'root' to m , then tag m as 'old' 
and go to another new marking; 

 Step 2.4: While there exist enabled transitions at m , do the following for each enabled  
    transition t at m : 
    Step 2.4.1: Obtain the marking m′ by firing t at m . 

 Step 2.4.2: On the path from root to m , if there exists a marking m ′′ such  
          that m′ nipimpi ,...,2,1)()( =∀′′≥ and mm ′′≠′ i.e. m′  

covers m ′′ , replace m′ )( ip by ω wherever m′ )()( ii pmp ′′≥ : 

Step 2.4.3: Introduce m′ as a node in the tree, draw an arc with label t      
from m to m′ , and tag m′ as 'new'. 

 
 
Example 5.5          
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Example 5.5 (contd.) 
                  )01001(0 =Tm  

   
 
 
 
        )00010(       )02000(  
                  Deadlock 
       

    
       )10100(  
     
 

   )10010(        
 
 
 
      )0100(ω  
 
 
 
     )0010(ω  
 
  
 
 
While constructing reachability(coverability) tree, the nodes of the tree corresponding to new 

markings are called Frontier Nodes, those corresponding to old markings are called Duplicate 
Nodes and those corresponding to markings having tag 'dead-end' are called Terminal nodes.  

Often one is interested in the markings of a subset of places and does not bother about the rest 
of the places in the net. This approach leads to the so called Submarking Reachability problem. 
This problem aims to find if ∃ an )( 0mRm ∈′ , where m′ is any marking whose restriction to a 

given subset of places agrees with that of a given marking m [2]. More formally, for PP ⊆′ and a 
marking m′ , does there exist a ),( 0mNRm ∈′′ such that Pppmpm iii ′∈∀′=′′ )()( [7]? 

Submarking reachability problem is important for model checking and verification. One must 
give answer in the form that this, this, this markings should never be reached during system's 
operational life-span. The answer must be given as negation since only negation is conclusive [7]. 

Similarly, one can define Zero Reachability Problem which asks if the specific marking with zero 
tokens in all places, is reachable. Formally, is ),( 0mNRm ∈′ with Pppm ii ∈∀=′ 0)( ? (i.e. 

is ),(0 0mNR∈ ?) 
In a similar way, one can define Single Place Zero Reachability Problem which asks if it is 

possible to empty all the tokens out of a particular place. Formally, for a given place Ppi ∈ , 

does there exist ),( mNRm ∈′ with 0)( =′ ipm ? 
In the context of reachability (coverability) problem, it can be a good idea to mention other 

important problems of PN. In PN context, the Reducibility problem is important. This problem 
addresses the questions like whether a given problem can be reduced to another problem, whose 
solution is already known. In the following example, reducibility problem is illustrated and Equality 
and Subset Problems are also introduced. 

 
 

      t1 t2 

t4 

t4 

t3 

t3 
(b) 

Figure 5.2: (a) Petri net graph, (b) coverability tree construction for (a) 
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Example 5.6 
 
Suppose it is desired to solve the Equality problem of PN, which says that, whether reachability 
sets of given Petri nets are equal or not. Formally, given two Petri nets 1N and 2N given 

by: ),,,,( 1011111 mOITPN = and ),,,,( 2022222 mOITPN = ; it is required to find 

whether ),(),( 202101 mNRmNR = . Another important problem is the Subset Problem, which 

seeks to determine whether ),(),( 202101 mNRmNR ⊆ .Now the equality problem can be 

reduced to two subset problems since to show ),(),( 202101 mNRmNR = , it is sufficient to show 

that ),(),( 202101 mNRmNR ⊆ and ),(),( 101202 mNRmNR ⊆ . Thus, the Equality Problem is 
reducible to Subset Problem. This illustrates the concept of reducibility. 

 
In the previous discussion, many types of reachability problems were introduced. Instead of 

solving each of them separately, isn't it a nice idea if it can be shown that, at least some of them 
are reducible to other problems? The following figure shows which reachability problems are 
reducible to which problems. 

 
 

     Reachability Problem  
 

 
 
 
              Zero-reachability Problem 
 
 
 
      
        Sub-marking reachability Problem 
      
 
       
 
      Single-place zero reachability Problem 
     
 
 
 
 
 

From now on, this report will use the term reachability tree for non-existence of omega case 
and coverability tree for the trees where (ω) will appear. But, in a coverability tree, information is 
lost through the use of the symbol (omega). Hence, if someone enquires whether a particular 
state (marking) is reachable or not, then one may not be able to give any conclusive answer 
using coverability tree, since information was lost during introduction of the symbol (ω). Thus the 
reachability test from coverability tree is inconclusive.  
    
5.2.1.2 Boundedness 
                         
A PN is called k-bounded with respect to an initial marking 0m , if each place in the net gets at 

most k tokens for all markings belonging to the reachability set )( 0mR , where k is a finite positive 
integer. 

Figure 5.3: Reducibility among reachability problems [7] 
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Mathematically, for Boundedness it should always happen that with respect to an initial 
marking 0m , ],1[)( nikpm i ∈∀≤  and this should happen )( 0mRm ∈∀ . 

If 1=k , then the PN is called Safe. Therefore, safeness is a special case of boundedness. In a 
safe PN, a place can either contain no token or it can contain only one token. In a safe net, there 
exists no such marking belonging to the reachability set (with respect to an initial marking) for 
which number of tokens in any place of the PN exceeds one. 
 
Example 5.6 
 
The PN in example 5.4 is unity bounded and hence safe (by definition). The PN in example 5.5 is 
unbounded. The coverability graph of Fig. 5.2 (b) shows unboundedness can be ensured from 
reachability tree from the appearance of ω in the tree.  

 
Now it is worthy to think what can be the physical significance of a bounded or safe net. Places 

in the PN often represent buffers and registers which can store intermediate data. In this context, 
a bounded or safe net means there will be no data overflows in the buffers or registers, no matter 
what firing sequence is selected [2].  

The reachability tree of an unbounded net will grow indefinitely and hence the symbol (omega) 
is introduced and coverability tree is constructed using the above stated algorithm. Thus, the very 
existence of the symbol (omega) in the tree means the PN is unbounded and the tree is 
coverability tree. Moreover, it also indicates which places of the PN are unbounded. Thus from 
reachability (coverability) tree one can make conclusions about boundedness (unboundedness) 
of the PN model, and hence of the actual system. Thus the boundedness test from reachability 
(coverability) tree is conclusive. 
    
5.2.1.3 Liveness 
 
A PN is called Live with respect to an initial marking, if for every marking belonging to the 
reachability set; it is possible to fire all the transitions at least once by some firing sequence. 

Mathematically, a PN is called Live with respect to an initial marking 0m , if )( 0mRm ∈∀ , it is 
possible to fire all the transitions at least once by some firing sequence. 

The liveness property, as defined above, is a very strong property. However, it is impractical 
and too expensive to verify such a strong property for systems like operating system of a 
computer [2]. For this reason, the notion of liveness is relaxed by introducing degrees of liveness. 
In this approach, degrees of liveness of individual transitions are introduced and then the degrees 
of liveness of the entire PN are defined. 

It is said that, a transition t of the PN, ),( 0mN is live at 
 
Level 0: if t can never be fired. Then it is said that t is L0 live or t is dead. 
Level 1: if t can be fired at least once in some firing sequence )( 0mL . Then t is L1 live. 
Level 2: if, t can be fired any finite positive integral number of times in some firing 

sequence )( 0mL . Then t is L2 live. 

Level 3: if ∃ at least one infinite length firing sequence )( 0mL∈ , in which t appears infinitely often. 
Then t is L3 live. 

Level 4: if t is L1 live )( 0mRm ∈∀ . Then t is called L4 live or live. Note that liveness (i.e. L4 
liveness) for a transition, just like liveness of a PN, is very strong property.  

 
Just like degrees of liveness of a transition, now one can introduce degrees of liveness of the 

entire PN. A PN, ),( 0mN is said to be Lk (Level k) live if every transition in the net is Lk 

live, 4,3,2,1,0=k . Following this definition, a PN is said to be live (i.e. L4 live), if every transition 
in the net is live (i.e. L4 live). Now one can appreciate the statement: liveness of a PN is a very 
strong property. Degrees of liveness, is a relaxed property. In between these two concepts, 
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another idea called Strict degrees of Liveness is introduced, which as a property, is stronger than 
degrees of liveness but weaker than liveness. A transition is said to be Strictly Lk live if it is Lk live 
but not L(k+1) live, where 3,2,1=k . Similarly, a PN is called Strictly Lk live if it is Lk live but not 
L(k+1) live, 3,2,1=k . 
 
Example 5.7  
      
 
 
 
 
 
 
 
 
 

  
 

 
 
 
 
 
 
 
So far, liveness has been defined in terms of transitions. One can, however, define the liveness 

with respect to marking also [8]. To do so, one has to define live and dead transition, live and 
dead PN, and live, non-live and dead marking – all with respect to marking. 
Live Transition: Let N be a PN and Tt ∈ ; t is said to be live iff )( 0mRm ∈∀ ∃ a  

marking )( 0mRm ∈′ , such that m′ enables t or t is m′ enabled. 

Dead Transition: Let N be a PN and t(belongs to)T; t is said to be dead iff )( 0mRm ∈∀ , t is not 
m -enabled. 

Live PN:    Let N be a PN. Iff Tt ∈∀ , t  is live then the PN is said to be live. 
Dead PN:    Let N be a PN. Iff Tt ∈∀ , t is dead then the PN is said to be dead. 
Live Marking:  Let N  be a PN. A marking )( 0mRm ∈′  is said to be live 

iff Tt ∈∀ , t is m′ enabled; where t is m′ enabled means the transition t gets 
enabled by the marking m′ . But as it is clear from the definition itself, live 
marking is a very strong condition. 

Non-live Marking: Let N be a PN. A marking is called non-live if it is not live. 
Dead Marking:   Let N be a PN. A marking m is called dead iff no transition belonging to the 

setT , is m -enabled. 
 

Corollary: A dead-marking is a non-live marking but a non-live marking may not be a dead 
marking. 

 
It can also be perceived that 

 
(1) all dead markings are deadends or terminal nodes but all deadends or terminal nodes are 

not dead markings.  
(2)  a term called Dead-code is often found in the literature, existence of which means a part 

of the net never gets executed (does not get any token) for a given initial marking. If the 
PN is modeling an algorithm or code, that part of the code always remains idle. Hence 
the name Dead-code. 

Figure 5.4: Transitions 3210 ,,, tttt are L0 live (dead), L1 live, L2 live and L3 live respectively [2]

p1

p2       t1 

t2 

p3 

t3 

      t0 
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After introducing the concept of liveness, now it's time to ask whether one can make 

conclusions about liveness from the reachability (coverability) tree. Because of the loss of 
information through the use of the symbol (omega), coverability tree can not give conclusive 
answer about liveness [2]. However, one can give conclusive answer as long as the net is 
bounded i.e. it is a reachability tree.  
 
Example 5.8         
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      t1 t2 
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Figure 5.5: (a) A Live PN, (b) A non-live PN, (c) both (a) and (b) have same coverability tree (c) – hence liveness test from
coverability tree is inconclusive [7] 
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5.2.1.4 Coverability 
  
A marking m in a PN, ),( 0mN is said to be Coverable if ∃ a marking )( 0mRm ∈′ such 

that ],1[)()( nipimpim ∈∀≥′ . 
The concept of coverability is very closely related to the concept of potential firability or L1 

liveness [2]. 
Suppose, m is the minimum marking needed to enable the transition t . Then t is dead (L0 live 
and not L1 live) iff m is not coverable. This means, t is L1 live iff m is coverable. 

The definition of coverability itself shows that one can give conclusive answer about coverability 
as long as the PN is bounded i.e. it is a reachability tree. Following the same logic of reachability, 
the coverability test from coverability tree is inconclusive. 
 
5.2.1.5 Reversibility and Home State 
    
A PN is said to be Reversible or Proper if the initial marking is reachable from all reachable 
markings.  

Mathematically, a PN is called Reversible or Proper if )( 0mRm ∈∀ , 0m is reachable from m . 

Equivalently, a PN is reversible if )( 0mRm ∈∀ , )(0 mRm ∈ . 
 

Example 5.9       )10(0 =Tm  
          
 
        

)01(1 =Tm  
 
 

             )10(0 =Tm  
        ‘Old’ 

 
 
 
 
 
 
 
 
 
In practical applications, it is often either not possible or not necessary to get back to the initial 
marking as long as one can get back to some marking covered by the initial marking. This 
particular marking (state) is called Home Marking or Home State. In this case also the PN is 
reversible. Thus when checking reversibility of a PN, the above stated definition of reversibility 
should not be followed blindly because the existence of home state was not taken into account in 
the definition. Formally, a marking m′ is said to be a home marking or home state if, 

)( 0mRm ∈∀ , m′ is reachable from m . 

A PN is reversible with respect to an initial marking 0m , iff every node in the coverability tree is 

in a directed circuit containing 0m . A PN is called Partially Reversible if a directed circuit 

containing 0m includes only some of the nodes. Hence, reversibility test from the reachability 
(coverability) tree is conclusive. 

 
 

p1

p2 

      t1 t2 

(a) (b) 

Figure 5.6: (a) A reversible PN, (b) the reachability tree of (a) shows that the net is reversible  
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      t1 



 33

Example 5.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
      
     )11000000(0 =Tm  

 
 
       
                  )00100000(1 =Tm  
 
 
 
                 )00110000(2 =Tm  
           
 
 
                 )00011000(3 =Tm  
 
 
 
 
         )00010100(4 =Tm       )00010010(5 =Tm  
 
 
 
        )00011000(3 =Tm       )00011000(3 =Tm  
 
 Figure 5.7: (a) AOCS PN graph, (b) Reachability tree shows initial marking 0m  is never attained since Launch  

                                 Phase or SNAP can never be reached again. But 3m becomes the home state and the PN (a) is reversible.  
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5.2.1.6 Repetitivity 
 
A PN is Repetitive with respect to an initial marking 0m iff the coverability graph has a directed 
circuit (not necessarily elementary) containing all the transitions infinitely often. It is Partially 
Repetitive if such a directed circuit contains only some of the transitions. 

More formally, a PN, ),( 0mN  is said to be (partially) repetitive with respect to an initial marking 

0m if ∃ a firing sequence σ such that every (some) transition occurs infinitely often inσ .  

Alternatively, a PN, ),( 0mN  is said to be (partially) repetitive with respect to an initial marking 

0m iff the coverability graph has a directed circuit (not necessarily elementary) containing all 
(some) the transitions infinitely often [9]. 

It can be mentioned at this point that reversibility does not necessarily imply repetitivity and vice 
versa. The definition itself clearly reveals that the repetitivity test from reachability (coverability) 
tree is conclusive. 
 
5.2.1.7 Persistence 
 
A PN is said to be Persistent if, for any two enabled transitions, firing of one transition will not 
disable the other. In other words, a PN is persistent if, for any )( 0mRm ∈ , an enabled transition 
can be disabled only by its own firing. 

This means that, a transition in a persistent PN, once enabled, will remain enabled, until it fires. 
This implies, a PN having conflicts can not be persistent since the same place is an input to more 
than one transition. In a conflict situation an enabled transition can be disabled by the firing of 
other transitions and hence can never represent persistence. In a nutshell, persistent nets are 
always conflict-free nets. 

The notion of persistence is important in the context of speed-independent asynchronous 
circuits and parallel program schemata [2].  

 
5.2.1.8 Consistency 
 
A PN is Consistent with respect an initial marking 0m  iff the coverability tree has a directed circuit 
(not necessarily elementary) containing all the transitions at least once [9]. It is Partially 
Consistent if such a directed circuit contains only some of the transitions. 

The definition shows that consistency test from reachability (coverability) tree is conclusive. 
 
5.2.1.9 Conservation 
 
A PN is said to be Conservative with respect to an initial marking 0m , iff the weighted sum of the 
tokens in every node of the reachability tree remains constant. A PN is called Strictly 
Conservative if the sum of the tokens in the net always remains constant [9]. 

In simpler terms, a PN is conservative if it does not lose or gain tokens but merely moves them 
around. Now one may ask why the definition of conservation is given in terms of weighted sum of 
tokens rather than sum of tokens. The answer is that, in a PN two tokens can be encoded in one 
token and that single token can produce two tokens via the firing of a transition. This is the reason 
why a weighting vector is introduced to define the value of a token in each place; the weights are 
always non-negative. 
 
Example 5.11 
 
     
 
 

      t1 

Figure 5.8: Although place p1 contains a single token it has a potential to produce two tokens.  
   Hence weight associated with place p1 must be 2.   

p3 

p1
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Conservation can be effectively tested using reachability tree. Since reachability tree is finite, 
the weighted sum can be computed for each marking. If this sum remains constant for all 
reachable markings, the net is conservative with respect to the given weight.  

Thus to find out whether a net is conservative or not, first one has to construct the reachability 
tree with respect to a given initial marking 0m . Let w be a )1( ×n column vector (single column, n  
rows), called weight vector, where n is the number of places. The i th entry of w is given 
by iw which is nothing but the weight associated with the place ip . If it happens that mwT = 
constant, where m is the marking of any node in the reachability tree with respect to an initial 
marking 0m , then one can conclude that the PN is conservative with respect to 0m . Since 0m itself 

is a node in the reachability tree, instead of checking mwT =constant, one can check whether 
mwT = 0mwT , this time m being marking of any node in the reachability tree except the top most 

node 0m . More succinctly, conservation with respect to 0m demands mwT = 0mwT )( 0mRm ∈∀ .                                  
Note that nothing has been said so far about how to find w . The conclusion about conservation 

depends a lot on one's ability to find such a )1( ×n vector w , which satisfies the above stated 
condition. Up to this point the only thing that is known about w is that it has non-negative entries. 
But obtaining w by trial and error method seems an impossible proposition, particularly when n is 
large. Is there any systematic procedure which can generate such a weight vector? The matrix 
method based structural approach has an invariant analysis algorithm to determine this weight 
vector. In behavioral approach, one can use the condition mwT = constant and thus generate a 
set of k linear algebraic equations ( k being the number of nodes in the reachability tree) in )1( +n  

unknowns ( nwww ,...,, 21 and the constant), subjected to the constraint 0≥iw ; ni ,...,2,1= . This 
is a well-known linear programming problem having many algorithms for solution. So if a solution 
exists, it can be computed. The solution obtained from these techniques, in general, will be 
rational numbers. Multiplying them by a common denominator yields non-negative integral 
solution. If no such weighting vector exists, which can be conclusively told from these techniques, 
then the PN is not conservative.  

One interesting situation comes when the net is unbounded i.e. the tree is coverability tree. 
Then the basic problem is how to incorporate (omega). The answer is that, if a marking has 
(omega) for a place pi, then the weight of that place must be zero for the PN to be conservative 
[7].  

Thus the conservation test from reachability (coverability) tree is conclusive. 
However, one can make an intelligent guess about the entries of the weight vector by recalling 

the fact that, the very need of introducing the weight vector is to indicate how many tokens are 
encoded in a particular token. Looking at each place and keeping the initial marking in mind one 
can make guess about how much weight should be assigned to a particular place. This can be 
done easily by thinking the PN as an infinite capacity one (each place can accommodate infinite 
number of tokens) and then mentally visualizing the number of tokens coming to each place. For 
example in Fig. 5.8, weight associated with place p1 must be 2. The following example will further 
illustrate this technique.      
 
Example 5.12 
 
In Fig. 5.9 PN graph of a Flexible Manufacturing Cell [9] is shown. The tokens in this context 
represent resources (e.g. robots, conveyors etc.). One expects the PN of this system to be 
conservative from the resource limitation point of view. One way to find the weight vector is to 
construct the reachability tree and then for all the nodes of the tree form a set of linear algebraic 
equations based on mwT = constant subjected to an inequality constraint 0≥iw ; ni ,...,2,1= . 
Then one can use linear programming techniques to get weight vector, which turns out to 
be T)111231231231( . 
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Alternatively one can observe from Fig. 5.9 that the place p1 has got the potential of depositing 
only one token to the output place p2 via transition t1. But two tokens can encoded in the place p2 
as it is the output place of two places p1 and p10 via t1. Again, p3 has got three tokens encoded in 
it as it can get two (as explained) encoded tokens from p2 and one encoded token from p11. 
Hence one must assign weights 1, 2 and 3 to places p1, p2 and p3 respectively. Similarly one can 
show that the weights associated with p4, p5 and p6 are 1, 2 and 3. Also those with p7, p8 and p9 
are 1, 2 and 3. Similarly, weights associated with p10, p11 and p12 can be shown to be 1, 1 and 1.  
 
5.2.1.10 Synchronic Distance 
 
Synchronic Distance measures the degree of mutual dependence between two transitions in a 
PN. This concept owes its origin to Carl Adam Petri.  

Formally, Synchronic Distance )( 12d between two transitions 1t and 2t in a PN, ),( 0mN is defined 
as: 

|)/(#)/(|#max 21)(12
0

σσ
σ

ttd
mL

−=
∈

 

 
where )/(# σjt denotes the number of occurrences of transition jt in the firing sequence 

σ ; mj ,...,2,1= . In short, by saying
1j

d
2j K= , one means that 

1j
t can not fire more 

than K times, without firing
2jt once (for all possible firing sequences over )( 0mR . 

 
Example 5.13 
      
In the PN shown in Fig. 5.10, 1,1 3412 == dd and ∞=13d . 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

p10

      t1 

p1 p2

p3

p11 p12

p4 p5

p6

p7 p8

p9

      t4       t7 

      t3       t6       t9 

      t2       t5       t8 
p10

Figure 5.9: PN for a Flexible Manufacturing Cell – the PN should be conservative      

p1

p2 

      t1 t2 

p3

p4 

      t4 t3 

Figure 5.10: Example of Synchronic Distance      
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5.2.1.11 Fairness 
 
Many different notions of fairness have been proposed in the literature. Here two basic fairness 
concepts are defined: 

(1) Bounded Fairness (B- Fairness) and 
(2) Unconditional (Global) Fairness. 

Two transitions 1t and 2t are said to be in a Bounded-fair (B-Fair) relation if the maximum number 
of times that either one can fire while the other is not firing is bounded. 

A PN, ),( 0mN is said to be a B-Fair net if every pair of transitions in the PN are in a B-Fair 
relation. 

A firing sequence σ is said to be unconditionally (Globally) Fair if it is finite or every transition in 
the net appears infinitely often inσ . 

A PN, ),( 0mN is said to be an unconditionally (Globally) Fair net if every firing sequence σ  

from )( 0mRm ∈  is unconditionally fair. 
 
Theorem: Every B-fair net is an unconditionally-fair net. 
 
Theorem: Every bounded unconditionally fair net is a B-fair net. 
 
 
 
Example 5.14 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

p1

p2 

      t1 t2 

p1

p2 

      t1 t2 

p3

p4 

      t4 t3 

p1

(a) (b) 

(c) 

Figure 5.11: (a) B-fair as well as unconditionally fair net, (b) unconditionally fair but not B-fair net, (c) neither B-fair nor unconditionally fair net 
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Now one can make a comparative study of the behavioral properties whose conclusiveness can 

be tested using reachability (RT) and coverability tree (CT). 
   

Conclusiveness of test from Properties 
Reachability Tree Coverability Tree  

Reachability   � 
Boundedness     

Liveness   � 
Coverability   � 
Reversibility     
Repetitivity     
Persistence     
Consistency     
Conservation     

Synchronic Distance     
Fairness     

 
 

 
 
5.2.2 Structural approach 
 
This approach deals with the structural properties of PN. Structural properties are independent of 
the initial marking. Behavioral properties are dynamic in nature, whereas structural properties 
deal with the static structure of the PN. Hence behavioral properties depend on markings and 
token game simulation but structural properties depend on nodes and arcs only and not on 
tokens and markings. In the following discussion, structural properties are treated in detail. Then 
effort has been given to make conclusions about them from matrix based structural analysis.  
 

I. Motivation for Structural analysis 
 
In systems and control theory, system description is given in terms of a set of differential or 
algebraic equations. Is it possible to give the Petri net system (static and dynamic) description in 
terms of some equations? That was the spirit that enabled the development of matrix equations 
for PN analysis. However, these matrix based method has limited power because of two reasons.  
First reason is the intrinsic non-determinism present in PN models, the second reason is that, 
unlike conventional control theory concepts, Petri nets pose one additional constraint that 
solutions must be non-negative integers. These two, togetherly make matrix based analysis 
somewhat weaker. 

In all subsequent analysis, it will be assumed that the PN is pure (self-loop free) and if it is not 
then it is made pure by adding a dummy transition and a dummy place, before applying any 
matrix based method. This, of course, increases the matrix dimension.  
 

II. Incidence Matrix 
 
For a PN having n places and m transitions, the Incidence Matrix ][ ijaA = is a )( mn × matrix of 
integers defined as: 

−+ −= ijijij aaa  

where +
ija  = weight of the arc from transition j to its output place i 

            −
ija = weight of the arc to transition j from its input place i 

Table 5.1: Behavioral properties and their decidability using RT and/or CT      
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It can be recalled that, i is index for place (general place is ip ) and j is the index for transition 

(general transition is jt ).  Also recall, ni ,...,2,1= and mj ,...,2,1= . Physically, +
ija , −

ija and ija , 
respectively, signify the number of tokens added, removed and changed in ith place due to firing 
of jth transition. 
 
Example 5.15 
 
Consider the PN shown in Fig. 5.14 (a). Now by definition, =n no. of places = no. of rows = 2 
and =m no. of transitions = no. of columns = 2. Hence dimension of the incidence matrix 
A is )( mn × = )22( × . Now, 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

 

 
Since, −+ −= 111111 aaa =  weight of the arc from 1t to its output place 1p  - weight of the arc   

to 1t from its input place 1p = 101 =− . 
 
          −+ −= 121212 aaa = weight of the arc from 2t to its output place 1p  - weight of the arc   

to 2t from its input place 1p = 110 −=− .  
 
          −+ −= 212121 aaa = weight of the arc from 1t to its output place 2p  - weight of the arc   

to 1t from its input place 2p = 110 −=− .  
 
          −+ −= 222222 aaa = weight of the arc from 2t to its output place 2p  - weight of the arc   

to 2t from its input place 2p = 101 =− .  
 

III. State Equation 
 
A state equation, as it is understood in control theory, is an equation, which can predict the next 
state (say )1( +k th state) of the system, having known the present state (say, k th state). It will be 
a nice idea, if the same can be done in PN context.   

Suppose a PN assumes a state (marking) 1+km resulting from another state (marking) km by the 

k th firing ( k th execution of the net), with 0≥k . Here 1+km is a )1( ×n column vector where the i th 

entry of 1+km denotes the number of tokens in place i immediately after the k th firing. The k th firing 

is expressed as the k th firing vector or k th elementary firing vector or k th control vector ku , which 

is an )1( ×m column vector where the j th entry of ku denotes the number of times transition j fires 

during the k th execution of the net. Since during a particular firing, a particular transition can 
either not fire or fire only once, hence the elements of the vector ku can be either 0 or 1; 0 in the 
position corresponding to the transition not fired and 1 corresponding to the transition fired during 
k th firing. Note that, in general, one can not say that in )1( ×n dimensional ku vector, there will be 

only one non-zero entry 1 and rest )1( −n zeroes, because in concurrent firing (if present) there 
will be multiple 1s and rest zeroes. Since the j th column of A denotes the change of marking as a 
result of firing transition j , the PN State Equation is given by [6]: 
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kkk Aumm +=+1 ;    ,...2,1,0=k        
(1)                                 

Since numbers of tokens are non-negative integers, the role of the vector ku is to make the right 

hand side of the state equation a )1( ×n matrix of non-negative integers i.e. to make 
 

0≥+ kk Aum ;    ,...2,1,0=∀k        
(2) 

                                                                                                                                                               
The above weak inequality can be used to test whether a given firing vector is legal or not, with    
respect to some marking km . In a sense, ku controls the validity of the next state with respect to 
present state. It is reminiscent of the control vector in the state equation in control theory. Hence 
the name control vector.  
 
Example 5.16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If Fig. 5.12 (a) corresponds 0m and (b) corresponds 1m .This is achieved by firing t2 only, is 
represented in the following state equation. 
  

001 Aumm +=  

(a) 

(b) 

p1

p2       t1 t2 p3p4 t3 

p2 t2 p4 

p1

      t1 p3 t3 

Figure 5.12: (a) A PN with initial marking, (b) that after firing t2      
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      ⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
2

 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
0
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

+
0
1
0

111
101

010
111

 

 
IV. Reachability: Necessary Condition  

 
For reachability, it is desirable to have a formula to test if a given marking fm (final marking) is 

reachable from a given initial marking 0m . Suppose a particular firing given by the firing vector 0u  

brings the system from 0m to 1m , 1u brings 1m to 2m , 2u brings 2m to 3m  ... 1−fu brings 1−fm to fm . 
Mathematically, these are achieved by repeatedly using the state equation: 

 

001 Aumm +=  

112 Aumm +=  

223 Aumm +=  
        ........................ 
                 11 −− += fff Aumm  
                                                                                                                                                                     (3)  
 
In short, final marking mf is reachable from initial marking 0m through a firing 

sequence },...,,,{ 1210 −fuuuu . Summing all the above equations: 
 

∑
−

=

+=
1

0
0

f

k
kf uAmm  

                                                      ⇒  σρAm =∆  
                                

(4) 
 

Where m∆ = 0mm f −  and ∑
−

=

=
1

0

f

k
kuσρ . Note that m∆ is a )1( ×n column vector andσρ is the sum 

of all the individual )1( ×m firing vectors or control vectors. σρ is called Firing Count Vector 
(already introduced in Art 5.2.1.1), which is a vector of non-negative integers where the j th entry 
of σρdenotes the number of times transition j  would fire in a firing sequence leading 

from 0m to fm . 
There should not be any confusion between Firing Vector (or Elementary Firing Vector or 

Control Vector) and Firing Count Vector. Firing Count Vector is the sum of Firing Vectors. The 
nomenclature is a potential source of misconception. Confusion may arise when using some 
reference which does not introduce all the terms. The terms Firing vector, Elementary Firing 
vector, Control vector - all are same.  But Firing Count Vector is different. Firing vector is 
associated with a single execution, which is an atomic event (hence the name Elementary Firing 
Vector) but Firing Count Vector is associated with firing sequence (though as mentioned in Art 
5.2.1.1, this association is not one-to-one) composed of multiple executions.  

The significance of equation (4) is that, for a given PN (⇒ A is known), given an initial 
marking 0m and a final marking fm , if it is asked that whether fm is reachable from 0m , then one 
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can give an answer. Unfortunately, this answer is not conclusive. If equation (4) results a non-
negative integer solution forσρ , then the desired marking may or may not be reachable – the test 
is inconclusive. But if no solution to equation (4) is found then the desired marking is not 
reachable – the negation is conclusive. Hence, this is a necessary but not a sufficient condition 
for reachability. 

The inconclusive nature for reachability test that results form equation (4) may be due to the 
following reason. State equation in general and equation (4) in particular, is an equation which 
relates PN state (marking), which is a more dynamic property with incidence matrix, which is a 
representation of static PN structure. The state or marking captures both the statics and 
dynamics of the net whereas incidence matrix captures only the static net structure. Relating the 
two using a single equation is like using logical AND operator which results the loss of information 
about the dynamics of the net. That's exactly what has happened in equation (4), it has lost some 
information about net dynamics. Hence, having a non-negative integral firing count vector as a 
solution of equation (4) is an inconclusive answer.  

  
V. Controllability 

 
The beauty of Petri nets is that, one can extract essential control-theoretic ideas and adapt them 
in the context of Petri nets, thus enabling the system engineer to make important conclusions 
without providing lengthy mathematical manipulations. In control theory, and similarly in PN 
theory, the term controllability refers to the ability of inputs to change the state of the system. 
Thus a system is controllable means there exists a sequence of inputs which can steer the 
system from one state to the other. More formally one can say, a problem domain is completely 
controllable iff for every two state values in the state space of the problem representation, there 
exists a finite sequence of inputs (that some planner could produce) which will move the states 
from one value to the other (one state or marking to the other).  
 

Equation (4) can also be written in the form of: 
 

[ ]UAAAAm .......=∆  
                                

(5) 
Where TT

f
TT

o uuuU ]...[ 11 −= ; this vectorU is a column vector of dimension )1( ×mf where the 

column is composed of only 1s and zeroes. In equation (5), the matrix ].......[ AAAA is composed 
of only A s and it is a row vector having single row and f A s. Since the dimension of 
each A is )( mn × , the dimension of this matrix ].......[ AAAA  is )( mfn × . Borrowing ideas from 
system theory [Appendix B], the significance of equation (5) is that the matrix ].......[ AAAA  is the 
controllability matrix in PN context. It can be shown [Appendix B] that, for a PN system to be 
completely controllable, the rank of the controllability matrix, and hence the rank of the incidence 
matrix, must be equal to the number of places in the PN.  

The above condition for controllability is necessary and sufficient for the existence of a solution 
U of equation (5) over the field of rational numbers; but is necessary and not sufficient forU to be 
a vector of zeroes and 1s. Thus, in PN context the above condition for controllability remains only 
as a necessary condition.  

If a problem domain is completely controllable, then for any state there exists a planner that can 
achieve any specified goal state. Very often complete controllability is not a property of the 
system, but it may possess a weaker form of controllability. This is the case in PN context too.  
The condition that rank of the controllability matrix (and hence that of the incidence matrix) equals 
number of places (in PN context) is as rarely satisfied as rank of the controllability matrix equals 
the state space dimension (in Control theory context). Therefore, a PN, in general, is not 
completely controllable just like in Control theory, systems are not completely controllable. This 
brings forth the concept of weaker controllability.  
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Moreover, both PN model and the actual plant are susceptible to disturbances. In PN context, 
disturbances appear as modeling inaccuracies and parameter variations just like in plant domain 
disturbances appear as noise in actuators, noise in physical system and noise in sensors.  
 
Theorem: A necessary condition that a PN be completely controllable is rank of the incidence 
matrix equals to number of places in the PN. (Proof: Appendix B) 
 

VI. Invariants 
 

A. Place Invariant 
 
A Place-Invariant or P-Invariant (also called S-Invariant) is defined as a )1( ×n non-negative 
integer vector x which satisfies the equation: 

 
0=AxT  

                                                                                                                      
(6) 

 
Now it is required to explain the physical meaning of a P-invariant. For this let’s pre-multiply both 
sides of the equation (4) by Tx : 
     

σρAxmxmx TT
f

T += 0  

                                                    ⇒ 0mxmx T
f

T =  (Since by definition, 0=AxT ) 
                    

(7) 
 
The expression in equation (7) is nothing but the conservation condition given in equation (1). 
Both these equations are looking for a vector such that the vector transpose times final (desired) 
marking equals the vector transpose times initial marking. This clearly reveals that the P-invariant 
vector x is nothing but the weight vector w associated with places of the PN; hence the name 
Place-invariant or P-invariant. 
 

B. Transition Invariant 
 
 A Transition-Invariant or T-Invariant is defined as a )1( ×m non-negative integer vector y which 
satisfies the equation: 

0=Ay  
(8) 

 
Now it is required to explain the physical meaning of a T-invariant. For this let’s post-multiply both 
sides of the equation (4) by y : 
 

σρAyymym f += 0  

                               ⇒ 0mm f =      (Since by definition, 0=Ay ) 
                    

(9) 
 
The expression in equation (9) gives a definition of T-invariant with physical meaning. A 
vector y of non-negative integers is a T-invariant iff there exists a marking fmmm == 0 and a 
firing sequence back to m whose firing count vector is y .   
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C. Invariant Representation 

 
P and T-invariants can be represented in two ways: 
 
(1) Vector representation 
 
P-invariant is represented as a )1( ×n vector given by T

npippp xxxxx ]......[
21

= . 

T-invariant is represented as a )1( ×m vector given by T
mtjttt yyyyy ]......[ 21= . 

 
(2) Set representation 
 
P-invariant is represented as },...,{|||| 21 kpppx = where nk ≤ ; this set includes only those 
places as elements of the set, which have non-zero weights. 
T-invariant, in a similar fashion, can be represented as },...,{|||| 21 qttty = where mq ≤  ; this set 
includes only those transitions as elements of the set, which have non-zero firing occurrences. 
 
 

D. Minimal or Basic Invariant 
 
A Minimal or Basic Invariant is one which is not a linear combination of other invariants. 

More formally one can define minimal P and T invariants as follows. Let },...,{|||| 21 kpppx = be 

the set representation of a P-invariant of a PN. Then |||| x is called a minimal P-invariant if ∃ a 
|||| x′ such that |||||||| xx ⊂′ , where |||| x′ is another net invariant. Similarly one can define minimal 

T-invariant. Since a linear combination of minimal T-invariants correspond a firing sequence 
which takes a marking back to itself, Minimal T-invariants are also called Reproduction Vectors. 

Having defined the minimal or basic invariants, now there are two major questions that remain 
to answer. First, given a PN, how many basic invariants are possible and secondly, how to 
determine them. Answer to the second question is relatively easy to perceive. Once the set of 
solutions of equation (6) or equation (8) (depending on whether one is interested in minimal-P or 
minimal-T invariants) is obtained, by factoring out the GCD (greatest common divisor) minimal or 
basic invariants can be computed. However, the answer to the first question is not so obvious. 
 
Theorem: A PN has )( rn − minimal P-invariants and )( rm − minimal T-invariants, where r is the 
rank of the incidence matrix A .  
 
Proof: Part (1) A PN has )( rm − minimal T-invariants. 
 
T-invariants are defined to be solutions of equation (8): 0=Ay . Let A be partitioned as:  
 

A = 
⎭
⎬
⎫

⎩
⎨
⎧

2221

1211

AA
AA

 

 
Where, 11A is )( rmr −× , 12A is rr × , 21A  is )()( rmrn −×−  and 22A is rrn ×− )( . This 

partition has been done by rearranging the columns of A such that 12A has r independent columns 

of A , i.e. 12A is a non-singular square matrix of dimension )( rr × . 
 Now equation (8) can be written as: 
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0
0

222121

212111

=+
=+

yAyA
yAyA

 

(10) 
  Where, 1y is of dimension 1)( ×− rm and 2y is of dimension )1( ×r . Since 12A is nonsingular and 
hence invertible, the first equation of (10) can be written as: 

 

111
1

122 yAAy −−=  
                        

(11) 
Substituting (11) in the second equation of (10): 
 

0)( 111
1

122221 =− − yAAAA  
          (12) 

 
The co-efficient of 1y in equation (12) is nothing but the schur complement of 21A [Appendix A]. 
Now from equation (11) it is evident that, the solution of equation (8) and hence the system of 
equations (10) is given by: 

y  = 
⎭
⎬
⎫

⎩
⎨
⎧

11
1-

12 A A -
I

 

                 (13) 
 

Where, I is an )( rm − dimensional identity matrix. Clearly, =Ty ])(,[ 1
1211

−− TT AAI = tB (say). 

Generally the basic T-invariants are given in terms of tB , which actually is the transpose of basic 

T-invariant. One can observe that tB has )( rm − rows. Hence the PN contains )( rm − basic T-
invariants. 
 
Check:         

T
tABAy = = 

⎭
⎬
⎫

⎩
⎨
⎧

2221
1211

AA
AA

  
⎭
⎬
⎫

⎩
⎨
⎧

11
1-

12 A A -
I

 = 
⎭
⎬
⎫

⎩
⎨
⎧ − −

1112
1-

2221

1112
1

1211

AAA - A
AAAA

= 
⎭
⎬
⎫

⎩
⎨
⎧
0
0

(using equation 

(12)) 
 
Hence the solution is verified. Note that A and tB are orthogonal to each other.   
 
Part (2) A PN has )( rn − minimal P-invariants. 
 
P-invariants are defined to be solutions of equation (6): 00 =⇒= xAAx TT . As it was done in 
case of T-invariants, similar partitioning yields: 

0

0

222121

212111

=+

=+

xAxA

xAyA
TT

TT

 

(14) 
Since 12

TA is invertible,  

222
1

12 )(1 xAAx TT −−=  
                                   (15) 
Consequently, 

0))(( 222
1

121121 =− − xAAAA TTTT             
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                            (16) 
 

The co-efficient of 2x in equation (16) is nothing but the schur complement of 21
TA  [Appendix A]. 

Now from equation (15) it is evident that, the solution of equation (6) and hence the system of 
equations (14) is given by: 

x = 
⎭
⎬
⎫

⎩
⎨
⎧

I
A )(A - 22

T-1
12

T

 

                 (17) 
 

Where, I is an )( rn − dimensional identity matrix. Clearly, ],[ 12
1

22 IAAxT −−= = pB (say). 

Generally the basic P-invariants are given in terms of pB , which actually is the transpose of basic 

P-invariant. One can observe that pB has )( rn − rows. Hence the PN contains )( rn − basic P-
invariants. 
 
Check:         
 T

p
TTT BAxAAx ==  

         =
⎭
⎬
⎫

⎩
⎨
⎧

2212

2111

TT

TT

AA
AA

⎭
⎬
⎫

⎩
⎨
⎧

I
A )(A - 22

T-1
12

T

=
⎭
⎬
⎫

⎩
⎨
⎧ − −

0
)( 2212

1
1121

TTTT AAAA
=

⎭
⎬
⎫

⎩
⎨
⎧
0
0

 

 
(Using equation (16)). Hence the solution is verified.   
 

Note that, the state equation (equation (4)) is given by: mA ∆=σρ , which is an inhomogeneous 
system of equations. It is a well-known fact in linear algebra that this inhomogeneous system has 
a solution σρ  iff m∆  is orthogonal to every solution x  of the homogeneous system 

00 =⇒= AxxA TT . Therefore, the existence of a solution for σρ  demands 
00 =∆⇒=∆ mBmx p

T .This gives an alternative statement (alternative to equation (4)) for 
necessary condition of reachability.  

 
E. Trivial invariant 

 
An invariant vector with all its elements equal to zero (or the null set, in the set representation) is 
called a trivial invariant. 
 

F. Non-trivial invariant 
 
An invariant is said to be non-trivial if at-least one element of the vector is non-zero (a non-empty 
set). 
 

G. Purely non-trivial invariant 
 
An invariant in which all the elements of the vector are non-zero (in set representation, all the 
places for a place invariant and all the transitions for a transition invariant are included in the set) 
is said to be a purely non-trivial invariant [5]. 
 

H. Computation of Invariants 
 
In the above section the fact that a PN has )( rn − minimal or basic P-invariants 
and )( rm − minimal or basic T-invariants has been established. Now the question is how to 
calculate the invariants. As per the definition of P and T-invariants, calculating invariants means 
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solving equation (6) and (8). These two seemingly innocent equations are not so easy to solve 
because of the constraint in the invariant definition that, the elements of solution vectors are non-
negative integers.  

At first glance, readers may get the misconception that without going for solving the equation 
(6) and (8) with constraint, why not directly partition A and get pB and tB in terms of partitioned 

matrices. It should be clearly understood that partitioning A and calculating pB and tB , in general, 
does not result in solution vector whose elements are non-negative integers. In fact, generally 
such a practice yields pB and tB having negative and/or fractional elements. This is clearly 

unacceptable. In a nutshell, calculating pB and tB may be used as a short-cut method to find 
invariants. If someone is fortunate enough, then one may get an invariant having all non-negative 
elements. Otherwise, in the general case, one has to use one of the following algorithms. The 
objective of computation is to find the minimal set of invariants – those invariants which are 
linearly independent.  
 
 
Martinez-Silva Algorithm 
 
Martinez and Silva [10] have given a Gauss elimination-like algorithm to calculate the invariants 
of a PN. This section describes the algorithm for finding minimal set of P-invariants. How the 
same can be used to find the minimal set of T-invariants will be mentioned subsequently. It may 
be helpful to recollect the fact that a PN has )( rn − minimal P-invariants and )( rm − minimal T-
invariants. 
 
Algorithm: 

Recall that the basic equation for finding P-invariants is 0=AxT . 
  
Step 1: Append an )( nn × identity matrix to A to generate ]:[ IA . 
Step 2: Nullify the i th column of ]:[ IA by adding any two rows of ]:[ IA . 
Step 3: Iterate for mj ,...,2,1= (stop when first m columns are nullified).  
Step 4: Take out the un-nullified columns (starting at the )1( +m th column, leaving first m nullified 

columns). 
Step 5: Rank of this resultant matrix is )( rn − . Hence )( rn − linearly independent rows are 

minimal P-invariants. 
 
Note that, there is no guarantee that this algorithm will find only the minimal invariants. Hence 

no one can guarantee that the resultant matrix has only )( rn − rows. Even if it has more 
than )( rn −  rows then by inspection one can find )( rn − linearly independent rows. This is 
where, knowing apriori the fact that there will be )( rn − minimal P-invariants, help.     

When it is desired to find minimal T-invariants then the basic equation to be solved 
is 00 =⇒= TT AyAy . With this form, it is very much similar to the basic equation for P-
invariants except the incidence matrix is now got transposed. Thus one can now apply Martinez-
Silva algorithm as stated above. Only at Step 3, this time one has to iterate for ni ,...,2,1= (nullify 
the i th column). Rest of the algorithm is similar to the above discussed P-invariant case. 
 
Example 5.17 
 

Consider the PN of example 5.15. The incidence matrix is ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

. Now it 

is required to apply Martinez-Silva algorithm.  
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Step 1: ]:[ IA ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1011
0111

. 

 
Step 2 and  
Step 3: [ ]1100 . 
 
Step 4: [ ]11 . 
 
Step 5: Rank of this resultant matrix is 1)12( =− . Hence only one linearly independent row is 
minimal P-invariant. 

Hence the minimal P-invariant is given by
⎭
⎬
⎫

⎩
⎨
⎧

=× 1
1

}{ 12x . Similarly one can find minimal T-

invariants. 
 
Computation of suitable invariants that help in providing various properties of the PN, and 

hence of the physical system are of particular interest. However, finding invariant is nothing but 
solving a set of simultaneous equations under inequality constraint, which is a tedious job, 
especially when the number of equations is quite large. Also in most practical situations, hardly 
one can find a unique set of invariants. The identification of the desired set of invariants from all 
possible ones is a complicated task [5]. The Martinez-Silva algorithm discussed above suffers 
from the disadvantage that it considers the entire set of equations and hence the entire net to 
compute the invariants. This may become a daunting task when the system is very complex and 
the PN is of very large size with complex interactions. Moreover, Martinez-Silva algorithm obtains 
minimal invariants. But minimal invariants may not be the desired invariants for proving properties 
of the PN. Hence it is still a challenging task to compute what combination of minimal invariants 
will give desired invariants. V. K. Agrawal [5] has proposed a simpler technique to find the desired 
invariants. In this approach, the invariant is found as described below: 
 
Step 1: Define a subnet called Restricted P-Subnet (RPSN) (as defined in Art 4.2.11). 
Step 2: Select a RPSN such that the selected RPSN can have an invariant which is also an 

invariant of the original PN. 
Step 3: The selected RPSN is reduced to a smaller one using the proposed reduction rules [5] 

and then the reduced subnet is analyzed. 
 
However, the selection of the subnet is governed by the properties to be proved. Since the 

subnet, in general, contains a subset of the entire set of places and transitions, the number of 
nodes required to deal with is much smaller. Then it is much easier to find the invariant for this 
subnet either by solving simultaneous equations under inequality constraint or by the algorithm 
proposed in [5]. The proposed technique is also useful for finding the spanning set of invariants 
for the entire net which covers all the places of the net. This report does not deal with the detailed 
intricacies of this technique. The above discussion serves only as an overview of how an 
alternate method can address the invariant computation problem. For a detailed discussion, one 
can refer to [5].   

 
 

I. Support of an Invariant  
 
The Support of an invariant is a set of nodes (places or transitions depending on support of P-
invariant or support of T-invariant) whose corresponding component in the invariant is positive.  
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The support of a P-invariant x is denoted by x which is a set of places whose corresponding 
components in the vector x is positive. Similarly, the support of a T-invariant y is denoted 

by y which is a set of transitions whose corresponding components in the vector y are positive. 
 

J. Minimal Support 
 
The support of an invariant is called minimal iff it does not contain the support of another invariant 
but itself and the empty set [9]. 
 
Example 5.18 
 
The minimal support for the P-invariant x in example 5.17 is given by: x },{ 21 pp= .  
 
Theorem: Let 1z and 2z be two invariants of same kind (either both P-invariant or both T-invariant) 
then: 

(1) For non-negative integers a andb , )( 21 bzaz + is an invariant. 

(2) If )( 21 zz − has no non-negative elements, then it is an invariant. 

(3) 2121 zzzz +=+ . 
 
The first statement, in the context of T-invariants, means that the firing sequence corresponding 

to a support resulting from a linear combination of minimal T-invariants (which by this theorem is 
also a T-invariant) will result a marking reproducing itself (a firing sequence starting a marking 
back to itself). Hence minimal T-invariants are also called Reproduction Vectors [9].    

 
Theorem: Let a pure PN is bounded with respect to an initial marking 0m . Let the place ip belong 

to the support of a P-invariant. Let jlll ,...,, 21 be the minimal supports containing ip and 

let jxxx ,...,, 21 be the minimal P-invariants associated with the minimal supports. Then 

for any reachable marking )( 0mRm ∈ , )( ipm is upper-bounded by: 

    ))](/()[(min)( 0,...,2,1 ill
T

jli pxxmpm =≤  
 
The above statement is important from PN boundedness property point of view. This theorem 

enables one to determine the k-boundedness of a PN from the P-invariants. It can be noted that if 
a net is covered by P-invariants and m0 is bounded, then the net is bounded.  
 

VII. Structural Properties 
  
This section will describe the structural properties and how to determine them using incidence 
matrix. 
5.2.2.1 Structural Boundedness 
  
A PN is said to be Structurally Bounded if it is bounded by any finite initial marking. 

Thus structural boundedness is more general case compared to behavioral boundedness 
which is defined with respect to a particular marking. Thus if one can show a PN is structurally 
bounded, it implies the PN has behavioral boundedness. 
 
Example 5.19 
 
 
 

Figure 5.13: The PN shown above is structurally bounded       
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Theorem: A PN is structurally bounded iff ∃ a )1( ×n vector x of positive integers such 

that 0≤AxT . (Proof can be found at [2]) 
 

A place p in a PN is said to be structurally unbounded if ∃ a marking 0m and a firing 

sequenceσ from 0m such that unbounded. 
 
Corollary: A place p in a PN is structurally unbounded iff ∃ an m -vector y of non-negative 

integers such that 0>≠∆= mAy , where yx >≠ means yx ≥ and ii yx ≠ for some i . 
 
5.2.2.2 Structural Liveness 
  
A PN is Structurally Live if it is live for any initial marking 0m . 
 
Example 5.20 
 
 
 
 
 
 
5.2.2.3 Structural Conservation  
 
A PN is Structurally Conservative if it is conservative for any initial marking 0m . 
 
Theorem: A PN is structurally conservative (partially structurally conservative) iff ∃ a )1( ×n  

vector x of positive (non-negative) integers such that 0=AxT . 
 
Example 5.21 
 
 

 
 
 
 
 
 
 
 
 
 
Partial structural conservativeness condition demands the existence of a P-invariant. Hence a 

partial structural conservative PN is also called a P-invariant net or S-invariant net. It can be 
noted that structural conservativeness is a special case of structural boundedness. 
 
5.2.2.4 Structural Repetitivity  
  
A PN is Structurally (partially) Repetitive if it is repetitive for at least one finite initial marking. 
 
Theorem: A PN is (partially) structurally repetitive iff ∃ a )1( ×m  vector y of positive (non-
negative) integers such that 0≥Ay and vice versa. (Proof can be found at [2]) 

Figure 5.14: The PN shown above is structurally live but the one in Fig. 5.13 is structurally not live       

Figure 5.15: The PN shown in Fig. 5.14 (a) is structurally conservative.  
 But the one shown above is partially structurally conservative but not structurally conservative  
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Example 5.22 
 
   
 
 
      
 
5.2.2.5 Structural Consistency  
  
A PN is Structurally (partially) consistent if it is consistent for at least one finite initial marking. 

Formally a PN is said to be structurally (partially) consistent if ∃ a finite initial marking 0m and a 

firing sequenceσ from 0m back to 0m such that every (some) transition occurs at least once inσ . 
 
Example 5.23 
 
 
 
 
 
 
 
 
 
The net shown in Fig 5.14 is structurally consistent but the one shown above is structurally 
partially consistent but not structurally consistent. 
 
Theorem: A PN is (partially) structurally consistent iff ∃ a )1( ×m  vector y of positive (non-
negative) integers such that 0=Ay . (Proof can be found at [2])  
 

Partially structurally consistent nets are also called T-invariant nets. It can be noted that 
consistency is a special case of repetitiveness. 

 
Theorem: If a PN is structurally bounded and structurally live then it is both structurally 
conservative and structurally consistent. 
 
 
5.2.2.6 Complete Controllability  
  
A PN is said to be Completely Controllable if from any state (marking), any initial state (marking) 
can be reached. Controllability is discussed in detail in Art 5.2.2 V.   
 
 
Example 5.24 
 
The net shown in Fig 5.14 is completely controllable. 
 
5.2.2.7 Structural B-Fairness  
  
Two transitions are said to be in a Structural B-Fair relation if they are in a B-fair relation for any 
initial marking. 

 
A PN is said to be structurally B-fair if it is a B-fair net for any initial marking. 

 
 

Figure 5.16: The PN shown above is partially structurally repetitive but not structurally repetitive  

Figure 5.17: The PN shown above is partially structurally consistent but not structurally consistent 
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Example 5.25 
 
 
 

  
 
 

 
 
 
 

   
Murata and Silva [11] have given the following results on structural B-fairness. 
 

i. A structural B-fair relation (as well as a B-fair relation) on the set of transitionsT is an 
equivalence relation and thus partitionsT into equivalence classes. 

ii. Structural B-fairness implies B-fairness but the converse is not true [2]. 
iii. A structurally bounded net is structurally B-fair iff 

Either it is consistent and there is only one reproduction vector (minimal non-negative T-
invariant 0≠y . 
Or it is not consistent and there is no reproduction vector. 

  
    

 
 
  
      
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(b) (a) 

Figure 5.16: (a) Structurally B-fair PN, (b) Not Structurally B-fair PN.  
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Conclusion 
 
This report described the basic Petri net theory in five chapters. Chapter 1 served as an 
introduction. Chapter 2 introduces the basic nomenclature and representation symbols in the 
context of Petri net and formally defines Petri nets and its various fundamentals. Chapter 3 is 
dedicated exclusively for modeling. Chapter 4 defines various sub-structures of Petri net which 
may ease the modeling and analysis of a complex net. Chapter 5 addresses the analysis aspect. 
Various analysis approaches and corresponding mathematical formulations are given. However 
for the sake of conciseness and less popularity among engineering fraternity, the reduction 
method of analysis is not discussed in Chapter 5. 

It should be emphatically mentioned that there are many other aspects of Petri net which has 
not been addressed in this report. Two such important topics are subclasses of Petri net and 
various extensions of Petri net.  

A vast formalism like Petri net theory demands attention to many aspects. Survey report on 
such a topic, henceforth, has to be either extensive or exhaustive. This report has been made 
with more emphasis on the depth of the matter rather than attempting to cover all aspects of the 
Petri net theory in a single run. This is the reason why the report has more vertical growth 
compared to lateral growth. However, it can be mentioned that, this is only a preliminary survey 
report made within the time limit of two months. The author hopes that the next tier report will be 
able to address the subclasses, various extensions, simulation (tools and limitations) and 
applications of Petri net. Once these basic concepts are addressed, then only one will be able to 
address interesting questions like applicability of optimal control theory to Petri nets, 
asynchronous decentralized control system modeling and analysis, hybrid system modeling, 
simulation, analysis and performance evaluation etc. In this sense this report, though looks very 
narrow-based at first glance, is rather open-ended.  
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Algebra of Partitioned Matrices 
 
 
 
 
 

 
 
 



A1. Definition of Partition Matrix or Block Matrix 
 
A Partition Matrix or Block Matrix is a matrix whose elements are themselves matrices, 
called blocks (not necessarily square blocks), such that in each row all the blocks have 
same number of rows and in each column all the blocks have same number of columns. 
Thus block matrix is a matrix of matrices. One can suitably partition a large dimensional 
matrix into smaller blocks to obtain the partition matrix or block matrix. 
 
Example 
 

Let the matrix 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

50544
05044
50544
33302
33320

X . It is a )55( × matrix. Let X be partitioned as :  

⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

X .  

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

505
050
505

44
44
44

333
333

02
20

D

C

B

A

 

Note that the blocks A  and B  have same no. of rows. Similarly blocks C  and D  have 
same no. of rows. 
Again blocks A  and C  have same no. of columns. Similarly blocks B  and D  have same 
no. of columns.   
 
 
A2. Partitioning a large dimensional matrix makes computation easier : An  
      Illustrative Example 
 
Often it is needed to compute the product of two large dimensional matrices. If we 
directly multiply the two matrices then it is very time consuming and sometimes 
impossible to calculate the product, since the memory space required to store such huge 
matrices in computer, is very large. This problem can be circumvented by partitioning the 
two matrices into smaller dimensional blocks. Then the product of two block matrices 
can be stored as the multiplication of smaller dimensional blocks.    

 
 



Let  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

npmqmqmq

np

np

aaa

aaa
aaa

A

   2   1   

   22221

   11211

Λ
ΜΟΜΜ

Λ
Λ

 

be a )( npmq×  matrix and   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

srnpnpnp

sr

sr

bbb

bbb
bbb

B

   2   1   

   22221

   11211

Λ
ΜΟΜΜ

Λ
Λ

 

 
be a )( srnp×  matrix. We can partition the two matrices by  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qpqq

p

p

AAA

AAA
AAA

A

Λ
ΜΟΜΜ

Λ
Λ

21 

 22221

 11211

 

and  
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

prpp

r

r

BBB

BBB
BBB

B

Λ
ΜΟΜΜ

Λ
Λ

21 

 22221

 11211

,  

 

where ijA  are )( nm×  matrices and jkB  are )( sn×  matrices,  
 

.,,2,1 ,,,2,1 ;,,2,1 rkpjqi ΚΚΚ ===  
 
  
 
 
 
 
 
 
 
 



Then,  

srmq

qrqq

r

r

prpp

r

r

qpqq

p

p

C

CCC

CCC
CCC

BBB

BBB
BBB

AAA

AAA
AAA

AB

×=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

21 

22221

11211

21

22221

11211

      
 

where  
 

,,,2,1  ;,,2,1  , 2211
1

rjqiBABABABAC pjpijijikj

p

k
ikij ΚΚΛ ==+++==∑

=
 

are )( sm×  matrices. 
So instead of storing )( srmq×  elements, now it is enough to store )( sm× elements. Thus 
simple partitioning can significantly reduce memory space requirement. 
 
 
A3. Definition of Block Diagonal Matrix 
 
A Block Diagonal Matrix is a partition or block matrix whose off-diagonal blocks are 
zero matrices and diagonal blocks are square matrices. 
 

If D  is a block matrix of the form 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

22

11

00
00
00

A
A

A
D  where ijA  are matrices, then 

we write ),,( 332211 AAAdiagD =  and call D  as Block Diagonal Matrix.  
 
Furthermore, 
                                                  ||.||.|||| 332211 AAAD =                                                 (a) 
 
and if 0≠D , then 
                                                ),,( 33

1
22

1
11

11 −−−− = AAAdiagD                                      (b) 
 
 
 
 
 
 
 



A4. Definition of Jordan Block 
 
A square matrix is called Jordan Block if  

i. each element along the diagonal consists of a single number λ ,  
ii. each element along the superdiagonal consists of 1, 
iii.  all other elements of the matrix are zero.    

 
Thus a Jordan block of order q  is a )( qq×  matrix denoted as qJ  given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

λ

λ
λ

λ

0...000
1...............
01...000
00...00
00...10
00...01

qJ  

It can be noted that the degenerate case of )11( ×  matrix is considered as a Jordan block, 
even though it lacks a superdiagonal to be filled with 1s [15].  
Instead of taking 1s along the superdiagonal, sometimes they are taken along the 
subdiagonal [16]. 
 
 
A5. Definition of Jordan Canonical Form 
 
Jordan Canonical Form is a special kind of block diagonal matrix where each diagonal 
block is a Jordan block with possibly differing constants iλ . 
Thus a Jordan Canonical Form J may be given as 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qn

q

q

q

J

J
J

J

J

0...000
0...............
00...000
00000
00000
00000

3

2

1

 

Example 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

3

4

0
0

21000000
12100000
01210000
0009.7000
00019.700
000019.70
0000019.7

J
J

i
i

i
J  

 
 
 



A6. Usefulness of Jordan Canonical Form  
 
Most of the linear algebra problems involving linear system of equations are easily 
manageable if the coefficient matrix is diagonalizable. However, for a non-diagonalizable 
matrix A  , it is difficult to compute quantities like kA  or Ae . Hence, finding the general 
solution of the form AteCtx

ϖϖ =)( of a system of linear differential equations )()( txAtx ϖϖ
& =  

may not be easy. Jordan Canonical Form provides a way to handle such non-
diagonalizable matrix A  and hence to compute kA  or Ae .  
 
 
A7. Definition of Upper Block Triangular and Lower Block Triangular Matrix  
 

If 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

00
0

A
AA
AAA

D  where ijA  are matrices, then D  is Upper Block Triangular 

matrix and (a) still holds.                                                                                                   (c)  
Lower Block Triangular matrices have the form of the transpose of (c). 
 
 
A8. Schur Complement and Matrix Inversion Lemma  
 
If A  is a partitioned or block matrix of the form 

                                                         ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

AA
AA

A                                                        (d) 

then we define Schur Complement of 22A  as 

                                                1211
1

212222 AAAAD −−=                                                  (e) 
and the Schur Complement of 11A  as  

                                               2122
1

121111 AAAAD −−=                                                    (f) 
 
The inverse of A  can be written 

                 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−+

= −−−

−−−−−−
−

22
1

11
1

2122
1

22
1

1211
1

11
1

2122
1

1211
1

11
1

1

DAAD
DAAAADAAAA                        (g) 

 

                 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−

= −−−−−−

−−−
−

22
1

1211
1

2122
1

22
1

11
1

2122
1

22
1

1211
1

11
1

1

AADAAADAA
AADDA                        (h) 

 

   or           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= −−−

−−−
−

22
1

11
1

2122
1

22
1

1211
1

11
1

1

DDAA
DAADA                                                 (i) 

 
 
 
 



depending, of course, on whether | 0|11 ≠A ,  | 0|22 ≠A , or both. These can be verified by 

checking that IAAAA == −− 11 . By comparing these various forms, we obtain the well 
known Matrix Inversion Lemma 
 
              112122

1
121121121111

1
21221211

1 )()( AAAAAAAAAAAAA −−− +−=+                 (j) 
 
The Schur Complement arises naturally in the solution of linear simultaneous equations, 
for if 

                                                 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ZY

X
AA
AA 0

2221

1211                                                   (k) 

 
then from the first equation 
                                                       YAAX 1211

1−−=                                                        (l) 
 
and using (l) in the second equation yields 
                                                ZYAAAA =− − )( 1211

1
2122                                               (m) 

 
If A  is given by (d), then 
                     ||.||||.|||| 2122

1
1211121211

1
212211 AAAAAAAAAAA −− −=−=                  (n) 

 
Hence the determinant of A  is the product of the determinant of 11A (or 22A ) and the 
determinant of Schur Complement of 22A (or 11A ).       
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Controllability 
Linear System Theory for Petri Nets 

 
 
 
 
 



 
B1. Two Important Points 
 

1. In the literature, a state is said to be controllable if there exists a sequence of 
inputs which can transfer that state to zero state or nominal state. Again, a 
state is said to be reachable if there exists a sequence of inputs which can 
transfer zero state or nominal state to that state. Many books on system theory 
do not make any distinction between these two definitions and controllability 
is defined in both the ways dropping the term reachability. However, in PN 
context, the term reachability has got a wide significance. Hence it is 
imperative in PN context, to closely follow the classical definition of 
controllability to avoid any confusion.  

 
2. The terms ‘completely controllable’ and ‘controllable’ are often taken  

synonymously in the literature. In PN context, as will be proved soon, 
complete controllability condition is hardly satisfied but weak controllability 
is not so rare.  

 
 
B2. Condition of Controllability for a Linear System  
 
To avoid mathematical complexity, we will consider linear time invariant (LTI) system. 
This will serve as a representative case for deriving condition of controllability in linear 
system theoretic framework. Once condition of controllability form LTI system is 
established then we will make an attempt to make a parallel study of controllability in PN 
context and in the process, we will end up with a corresponding condition of 
controllability ( i.e. complete controllability ) in PN context. 
       
For LTI systems, the n -dimensional linear state equation is given by 

 
                                                    )()()( tuBtxAtx ϖϖ&ϖ +=                                                      (a) 
where 

)(txϖ  is )1( ×n  state vector, 
)(tuϖ  is )1( ×p  input vector, 

A  is )( nn×   
B  is )( pn×   
 
Theorem: The n -dimensional linear time-invariant state equation is controllable iff any 
of the  following equivalent conditions are satisfied. 
 

i. All rows of  Be At−  (and consequently of  Be At ) are linearly independent on 
[0, ∞) over C, the field of complex numbers.   

 
ii. The controllability grammian 

                                                    W  ∫
∗∗=

t
AA deBBe

0

τττ   is nonsingular for any 0>t . 

 
 

Coefficient matrices.



iii. The )( npn×  controllability matrix  

                                                  U   ]:...:::[ 12 BABAABA n−  has rank n . 
 
Proof: We will prove here that the controllability conditions, as listed above, are 
equivalent. The first attempt is to prove that conditions (i) and (ii) are equivalent. Then 
we will prove that (iii) is equivalent to condition (i) (and hence also to condition (ii)).   
 

Proving Equivalence of Condition (i) and (ii) 
 
Theorem: Let if

ϖ
 for ni ,...,2,1=  be )1( p×  complex-valued continuous functions defined 

on ],[ 21 tt . Let F  be the )( pn×  matrix with if
ϖ

 as its i th row. Define 

),( 21 ttW  dttFtF
t

t

)()(
2

1

∗∫=  

Then 1f
ϖ

, 2f
ϖ

, … , nf
ϖ

 are linearly independent on ],[ 21 tt  iff the )( nn×  constant matrix 

),( 21 ttW is non-singular†. 
 
Proof:  
 Proof of necessity of the theorem 

Let’s assume that if
ϖ

s are linearly independent on ],[ 21 tt  but ),( 21 ttW  is singular. 
Then ∃ a non-zero )1( n×  row vector αϖ such that ),( 21 ttWαϖ = 0

ϖ
. This implies 

0),( 21 =∗αα ttW  ⇒  =∗αα ),( 21 ttW 0))())(((
2

1

=∗∫ dttFtF
t

t

αα  

(b) 
Since the integrand ∗))())((( tFtF αα  is a continuous function and is non-negative 

],[ 21 ttt ∈∀ , equation (b) implies 
0)( =tFα       ],[ 21 ttt ∈∀ . 

This contradicts the linear independence assumption of the set if
ϖ

, ni ,...,2,1= . Hence if 
the if

ϖ
s are linearly independent on ],[ 21 tt , then ),(.det 21 ttW 0≠ . 

 
  Proof of sufficiency of the theorem 
Suppose ),( 21 ttW is non-singular. But if

ϖ
s are linearly dependent on ],[ 21 tt . Then by 

definition, ∃ a non-zero constant )1( n×  row vector αϖ such that )(tFαϖ = 0
ϖ

],[ 21 ttt ∈∀ . 
Consequently we have  

=),( 21 ttWα 0)()(
2

1

=∗∫ dttFtF
t

t

α  

 
† In fact, the matrix ),( 21 ttW , called the Grammian matrix is positive definite. The 

determinant of ),( 21 ttW  is called the Gram determinant of if
ϖ

s.  
 



which contradicts the assumption that ),( 21 ttW  is non-singular. Hence, if ),( 21 ttW  
is non-singular, then the if

ϖ
s are linearly independent on ],[ 21 tt .                          (Proved) 

 
Now we note that Be At−  (and consequently Be At ) are real valued continuous functions, 
a subset of complex valued continuous functions. Hence the above theorem, when 
applied to Be At−  (and consequently to Be At ) directly proves the equivalence of 
condition (i) and condition (ii).   
 

 
Proving Equivalence of Condition (i) and (iii) 

 
Theorem: Assume that for each i , if

ϖ
 is analytic on ],[ 21 tt . Let F  be the )( pn×  matrix 

with if
ϖ

 as its i th row and let )(kF  be the k th derivative of F . Let 0t  be any fixed point 
in ],[ 21 tt . Then the if

ϖ
s are linearly independent on ],[ 21 tt iff 

....]:)(:...:)(:)(:)([ 0
)1(

0
)2(

0
)1(

0 ntFtFtFtF n =−ρ   
 
Proof:  
 
Similar to the proof of previous theorem using method of contradiction. 
Since the entries of Be At−  are analytic functions, the above stated theorem implies that 
the rows of Be At−  are linearly independent on ),0[ ∞  iff  
 

nBAeBAeABeBe nAtnAtAtAt =−− −−−−−− ...]:)1(:...:::[ )1()1(2ρ   
),0[ ∞∈∀t .  

Now let 0=t ; then this equation reduces to 
 

nBABABAABB nnnn =−−− −− ...]:)1(:)1(:...:::[ )1()1(2ρ  

From Cayley-Hamilton theorem, we know that mA  with nm ≥  can be written as a linear 
combination of 1,...,, −nAAI . Hence the columns of BAm  with nm ≥  are linearly 

dependent on the columns of BAABB n )1(,...,, − . Consequently 

])1(:...:::[...]:)1(:...:::[ )1()1(2)1()1(2 BABAABBBABAABB nnnn −−−− −−=−− ρρ
 

Since changing the sign does not change linear independence, we conclude that the rows 
of Be At− are linearly independent iff  

                                   nBABAABB n =− ]:...:::[ )1(2ρ .                                      (c)  

The matrix ]:...:::[ )1(2 BABAABB n−  is called the Controllability matrix of the 
LTI system. This completes the proof of the equivalence of statements (i) and (iii).                               
(Proved) 
 
 
 



 
B3. Condition of Controllability for a PN  
 
The state equation of a PN, when compared with the state equation of LTI system, 
reveals the fact that the identity matrix in PN state equation is analogous to the state 
vector coefficient matrix A  in LTI system and the incidence matrix in PN state equation 
is analogous to the control vector coefficient matrix B  in LTI system. Thus in equation 
(c), replacing A  by identity matrix and B  by incidence matrix, we obtain that the 

controllability matrix for PN becomes ]:...:::[ AAAA and the condition for 
controllability becomes 

nAAAA =]:...:::[ρ  
                                                        nA =⇒ ][ρ  
Hence the controllability requirement in PN context is that the rank of the incidence 
matrix must be equal to the no. of places in the PN. 
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