

A Study of Petri Nets

Modeling, Analysis and Simulation

Project done as part of summer training
Under the guidance of

Dr. A. Venkateswarlu

Dy. Division Head
Control Dynamics and Analysis Division

Control Systems Group
ISRO Satellite Centre
Bangalore – 560 017

submitted in the requirement for the partial fulfillment of Dual Degree in
Aerospace Engineering

by

Abhishek Halder (03AE3009)
Undergraduate Student

Department of Aerospace Engineering
Indian Institute of Technology Kharagpur

Kharagpur – 721302
West Bengal, INDIA

August 2006

Contents
 Page No.

Certificate

Acknowledgement

Chapter 0 Motivation

Chapter 1 Introduction 1

Chapter 2 Basic Concepts and Definitions

 2.1 Informal Introduction to Petri Nets 2
 2.2 Formal Introduction to Petri Nets

2.2.1 Definition of Petri Net 3
2.2.2 Alternative definition of Petri Net 4
2.2.3 Definition of Ordinary Petri Net 4
2.2.4 Definition of Marked Petri Net 5
2.2.5 Definition of Pure Petri Net 5
2.2.6 Definition of Finite and Infinite Capacity Petri Net 5
2.2.7 Firing Rule 6

Chapter 3 Modeling with Petri Nets

 3.1 Petri Nets as Modeling Formalism 8
 3.2 Basic Modeling Constructs

3.2.1 Sequential execution 8
2.2.2 Synchronization 9
2.2.3 Conflict 9
2.2.4 Concurrency 9
2.2.5 Confusion 10

 3.3 Primitives for Programming Constructs

3.3.1 Selection (if – else) 11
3.3.2 Case (Switch) statement 11
3.3.3 While loop 12
3.3.4 Repeat (for) loop 12
3.3.5 Precedence 12
3.3.6 Timed occurrence 12
3.3.7 Either – or (Mutual exclusion) 13

Chapter 4 Sub-structures of Petri Nets

 4.1 Importance of sub-structures 14
 4.2 Sub-structures of Petri nets

4.2.1 Source and sink 14
4.2.2 Directed path (DP) 15

4.2.3 Simple Directed path (SDP) 15
4.2.4 Looping of paths (LOP) 15
4.2.5 Directed circuit (DC) 15
4.2.6 Pure Directed path (PDP) 15
4.2.7 Pure Directed circuit (PDC) 16
4.2.8 Subnet (SN) 16
4.2.9 P – Subnet (PSN) 17
4.2.10 T – Subnet (TSN) 17
4.2.11 RP-Subnet (RPSN) 17
4.2.12 Dual Net 17

 4.3 Other important Petri net structures

4.3.1 Composition of Petri nets and Composed PN 18
4.3.2 Projection of Petri nets and Projected PN 18
4.3.3 Inverse of a PN or Reversed PN 19
4.3.4 Connectivity and Strong Connectivity 19
4.3.5 Traps and Siphons
 4.3.5.1 Traps 19
 4.3.5.2 Siphons 20
 4.3.5.3 TC and SC net 22
 4.3.5.4 TCC and SCC net 22

Chapter 5 Analysis of Petri Nets

 5.1 Importance of analysis 23
 5.2 Analysis approaches

5.2.1 Behavioral approach
 5.2.1.1 Reachability 23
 5.2.1.2 Boundedness 28
 5.2.1.3 Liveness 29
 5.2.1.4 Coverability 32
 5.2.1.5 Reversibility and Home State 32
 5.2.1.6 Repetitivity 34
 5.2.1.7 Persistence 34
 5.2.1.8 Consistency 34
 5.2.1.9 Conservation 34
 5.2.1.10 Synchronic Distance 36
 5.2.1.11 Fairness 37
 5.2.2 Structural approach

I. Motivation for Structural analysis 38
II. Incidence Matrix 38

III. State Equation 39
IV. Reachability: Necessary Condition 41
V. Controllability 42
VI. Invariants

A. Place Invariant 43
B. Transition Invariant 43
C. Invariant Representation 44
D. Minimal or Basic Invariant 44
E. Trivial Invariant 46
F. Non-trivial Invariant 46
G. Purely non-trivial Invariant 46
H. Computation of Invariants 46
 I. Support of an Invariant 48
J. Minimal Support 49

VII. Structural Properties
 5.2.2.1 Structural Boundedness 49
 5.2.2.2 Structural Liveness 50
 5.2.2.3 Structural Conservation 50
 5.2.2.4 Structural repetitivity 50
 5.2.2.5 Structural Consistency 51
 5.2.2.6 Complete Controllability 51
 5.2.2.7 Structural B-Fairness 51

Conclusion 53

Appendix A

Appendix B

References

Acknowledgement

The information presented in this report is an outgrowth of surveying many journals and books on
Petri net, which I consulted at the ISAC library. I would like to take this opportunity to thank Dr. A.
Venkateswarlu, Dy. Head, Control Dynamics and Analysis Division, Control Systems Group, for
guiding me through the period of two months during my work at ISAC. I greatly appreciate the
kind support, thought provoking discussions and suggestions provided by him. I am grateful to
him for introducing me to the world of Petri net.

I am deeply indebted to A. Indra, Head, Advanced Systems Development Section, CSG, for the
kind mentorship provided by her. She holds the credit for clarifying many intricacies of Petri net,
providing some excellent references and arranging many working facilities for me, which would
otherwise be difficult to get.

I would like to acknowledge Mr. Jasvinder Singh Khoral, Scientist/Engineer ‘SF’, CSG for kindly
agreeing to accompany on Sunday for finishing the documentation of this project, Dr. V.K.
Agrawal, Group Director, CSG for allowing me to work in this group and last but not the least, Dr.
N.V. Vighnesam, Head, Orbit Dynamics and Determination Section (ODDS), without his effort, it
would be impossible to work in ISAC. Dr. Manoranjan Sinha at the Department of Aerospace
Engineering, IIT Kharagpur, took great endeavor to arrange the permission for my summer
training at ISAC. Thanks to him.

Chapter 0

Motivation

“A complex unity formed of many often diverse parts to a common plan or serving a common
purpose.”

- Definition of ‘system’
 Webster Dictionary.

The above quoted definition captures the current trend and future direction of system
engineering, as mere static description of constituent units no longer describes a ‘system’.
Today’s complex system involves multiple communicating units. Understanding such a system
demands a closer look at the dynamic interaction between the constituent entities and their
emergent behavior.

Modern systems are no more continuous or discrete alone, rather a combination of them where
some subsystems are in continuous domain, some in discrete domain and some are event-driven
systems. Such a system of multifarious nature is often referred as a hybrid system. In particular,
modeling and analysis of event-driven systems are beyond the scope of conventional system
theory and need special treatment for suitable representation and analysis of such a system,
named as discrete event dynamic system (DEDS).

Dynamics of DEDS is often event-based, asynchronous and concurrent in nature. While event-
driven nature is itself difficult to handle, asynchrony and concurrency poses further challenge for
modeling and analysis. Real life events take variable amount of time. Thus time, from a
philosophical perspective, only defines a partial ordering of events. Hence any representation of
DEDS must be able to represent asynchronous behavior of the system. Concurrency, on the
other hand, requires a tractable and flexible theory, as there exist many conflicting views of
concurrency. Some early models of concurrency (like interleaving model) viewed system’s
behavior as partially ordered sequence of events over a period of time. This, however, addresses
concurrency in an indirect manner by introducing the concept of “pseudo-concurrency”. So there
is a need of more robust representation of true concurrency.

 1

Chapter 1

Introduction

In the engineering discipline, system evolution has invariably been facing three major needs.

(1)The need to develop increasingly complex systems.
(2)The need to assess the system’s operational risks.
(3)The need to have a cost competitive solution to attain these requirements.

Due to time and money constraints, it is no longer feasible to follow the design cycle of trial and
error prototyping. Instead, the industry is leaning more towards simulation, so that the design
flaws can be worked out even before the prototype is built.

It’s here Petri Net comes in. Petri net is a net-based abstraction, which can be used as a
modeling tool (graphical and mathematical), as a simulation tool and as an analysis tool.

As a modeling tool, it helps in system design. The graphical nature aids system visualization,
the mathematical nature captures system behavior.

As a simulation tool, it enables one to identify design errors. Extensive simulations may detect
errors, which are rare and elusive.

As an analysis tool it reveals various properties of the model and hence of the actual physical
system. Thus, one can draw important conclusions about the system without going for
experimentation or performing lengthy calculation of conventional system modeling.

 2

Chapter 2

Basic Concepts and Definitions

2.1 Informal Introduction to Petri Nets

Any system consists of a number of activities and the system can be modeled by listing the states
of the system, before and after those activities. An activity brings the system from one state to
another i.e. activity causes state-transition. All such state-transitions, when graphically
represented, are called state-transition diagram.

Example 2.1:

Figure 2.1 State-transition diagram for OFF-ON transition

The above state-transition diagram shows that the system undergoes a transition from OFF state
to ON state. The activity, in this case, can be pressing of a switch.

A closer look at Fig. 2.1 reveals that a state-transition diagram is a directed graph composed of
two elements: nodes (representing state of the system) and arcs (representing the direction of
state-transition).

Pictorially nodes are represented by circles. Arcs are of two types: input arcs and output arcs.
In Fig. 2.1, there are two nodes, representing OFF and ON state. The only arc in Fig. 2.1 is the
output arc with respect to OFF node and input arc with respect to ON node.

The state-transition representation, as shown above, has some serious limitations. As one can
see in Fig. 2.1, there is no representation of the activity itself. Also, there is little or no scope to
represent the condition (if any) for which the transition occurs (say, if the temperature is less than
40oC then the switch is pressed to make the system move from OFF to ON state). In addition to
that, one has to define first the system’s global state and then enumerate all the states and
feasible events at each state. A possible consequence is the state-explosion problem for complex
systems.

A formalism that can overcome some of these limitations is Petri nets. It gives more modeling
flexibility by introducing two kinds of nodes; one (called places) to represent the states and/or
conditions and the other (called transitions) to represent the activities. It uses local states rather
than global states, thereby avoiding the state enumeration problems in the modeling stage. It can
explicitly represent precedence relations, conflicting situations, synchronization concepts,
concurrent operations and mutually exclusive events.

OFF ON

 3

Example 2.2:

Figure 2.2 Petri net graph for OFF-ON transition

The Petri net graph of Fig. 2.2 shows that when the system is in OFF state and when temperature
is less than 40oC and when the switch is pressed then the system makes a transition from OFF
state to ON state. A comparison of Fig. 2.1 and Fig. 2.2 shows that how Petri net graph provides
more modeling power and flexibility over state-transition diagram.

A closer look at Fig. 2.2 reveals that a Petri net is a directed graph composed of two elements:
nodes (places and transitions) and arcs (input and output).

Pictorially places are represented by circles and transitions by bars. Arcs are labeled with their
weights (positive integers) – labels for unity weight are usually omitted.

The nodes and arcs constitute the static structure of Petri net. The dynamic behavior of the net
is given by ‘token game’, representing various states of the system. A particular state is a
snapshot of the system’s behavior. The state of a place is called its marking, represented by the
presence (condition holds) or absence (condition does not hold) of black dots, called tokens, in
the circle representing the place. Current state of the modeled system (marking of the system) is
given by the number and type (if tokens are distinguishable) of tokens in each place.

While places and arcs are passive components of the net, transitions are active components.
When all input places and no output places of a transition contain tokens, then a transition fires.
Firing of a transition removes tokens from all of its input places and puts tokens in its output
places. Thus, token-flow occurs via the firing of transitions. The system achieves a new marking
via the firing of a transition. Introduction of tokens into places and their flow through transitions
enable one to describe the discrete-event dynamics of the PN and thereby of the modeled
system.

2.2 Formal Introduction to Petri Nets

Before giving formal definition of Petri net, two important points may be noted:

(1) Some people do make a distinction between Petri net graphs (the graphical
 representation) and Petri net structure (the mathematical structure). No such distinction is
 made in this report.

(2) The Petri net was originally defined in a way that token-carrying capacity of each place
was one. A later extension of Petri nets, called Place-Transition nets (PT nets) allowed
multiple tokens at a place. In this report, all subsequent theories are given for PT nets,
which are more general. Henceforth, the terms PT nets and ordinary Petri nets are
interchangeably used.

2.2.1 Definition of Petri net

An Petri net, ‘ N ’ is a bipartite, weighted, directed multigraph, mathematically represented by a
four-tuple),,,(OITPN = where

OFF ON

SWITCH

T< 40OC

 4

P = { ni pppp ,...,,...,, 21 } is a finite set of places, Node definition P ∩T = Ø

T = { mj tttt ,...,,...,, 21 } is a finite set of transitions, P UT ≠ Ø

 I : (TP ×) → No

+ Arc definition No
+ = {0,1,2,…}

O : (TP ×) → No
+

The node definition says that the set of places and the set of transitions are disjoint (having no

common elements) and there exists at least one node (TPx ∪∈) in the net. The set of arcs
(F) defines two types of functions: input function (I) and output function (O). These input-
output functions describe flow of tokens from places to transitions and from transitions to places.
Note that F ⊆ (TP ×) U (PT ×). Again | P | = n and | T | = m , meaning an ordinary Petri net
has n places and m transitions. This notation will be used in the subsequent discussions. A
general place element is denoted by ip and a general transition is denoted by jt . As already

mentioned, i = 1,2, ….. , n and j = 1,2, ….. , m .
Some authors [2] prefer to use the set of arcs (F) and a weight function (W) in the Petri net

definition instead of using input-output functions (I and O). In this notation, a Petri net is
represented by a four-tuple, N = (WFTP ,,,) where
F ⊆ (TP ×) U (PT ×) defines flow relation,
W : F → N+ is a weight function, N+ = {1, 2,3,…}

Weight of arc is defined in the following way. If ktpI ji =),(, where 1>k is an integer, a

directed arc from place ip to transition jt is drawn with the label (weight) k . If k = 1, an

unlabeled arc is drawn and if it happens that k = 0 then no arc is drawn.

2.2.2 Alternative definition of Petri net

Note that Petri net is defined in Art 2.2.1 with two basic node elements: places and transitions.
One can, however, define a Petri net with respect to a single node element i.e. either with respect
to place or with respect to transition. To do that the concept of preset and postset is needed. With
respect to transition one can define

t• , called the preset of transition t = set of all input places of the transition t
•t , called the postset of transition t = set of all output places of the transition t

Similarly, with respect to place one can define

p• , called the preset of place p = set of all input transitions of the place p
•p , called the postset of place p = set of all output transitions of the place p

Now one can define a Petri net with respect to transition alone as a net tN such that ∀ t ∈ T ,

 t• = { p : p ∈ P and),(tpI ≠ 0} and •t = { p : p ∈ P and),(tpO ≠ 0}
Following similar notation, one can define a Petri net with respect to place alone as a net

pN such that ∀ p ∈ P , p• = { t : t ∈ T and),(tpO ≠ 0} and
•p = { t : t ∈T and),(tpI ≠ 0}

Unless otherwise stated, it is assumed that the Petri net has no isolated node i.e. no node

TPx ∪∈ exists such that •• = xx = Ø.

 5

2.2.3 Definition of Ordinary Petri net

An Ordinary Petri net is one where all arcs are unity-weighted (and hence unlabeled),
mathematically represented by a four-tuple),,,(OITPN = where ∀ p ∈ P , ∀ t ∈T ,),(tpI ≤ 1
and),(tpO ≤ 1.

It can be mentioned that ordinary and non-ordinary Petri nets have same modeling power since
one can always represent an arc of higher weight as a set of arcs, each of unit multiplicity, the
cardinality of the set being the weight of the arc of non-ordinary Petri net. Therefore, it is always
possible to convert a non-ordinary Petri net into an ordinary Petri net without sacrificing generality
but sometimes non-ordinary Petri nets are preferred due to ease of modeling.

2.2.4 Definition of Marked Petri net

A Marked Petri net is a five tuple),,,,(MOITPN = where M can be viewed as a function,

which assigns a natural number with each place, i.e. M : P → No
+. M can also be viewed as a

vector given by },...,,...,,{ 21 nik MMMMM = where the i th entry of M is iM , which is the

marking of the place ip .

2.2.5 Definition of Pure Petri net

A Pure Petri net is one, which does not have any self-loop. It means, there exists no such place in
the net, which is simultaneously an input place and an output place to a transition.

 In mathematical representation, for a pure Petri net N , P ∩T = Ø i.e. set of places and set of
transitions are mutually disjoint. Following the alternative definition of Petri net, a pure Petri net

N must satisfy the criteria that ∀ T , { t• } = { •t } = Ø.
 Petri nets having self-loops represent reflexive property and hence self-loop free pure Petri

nets are also called non-reflexive Petri nets. Any impure Petri net (Petri nets having self-loops)
can be made pure by adding appropriate dummy places and transitions to it.

Example 2.3:

The Fig. 2.3 shows how an impure Petri net (a) can be made pure (b) by suitably adding dummy
places and transitions.

2.2.6 Definition of Finite and Infinite Capacity Petri net

An Infinite Capacity Petri net is one in which each place can accommodate unlimited number of
tokens.

Dummy transition

Dummy place

Figure 2.3: (a) Impure Petri net, (b) Pure Petri net

(a) (b)

 6

Since in a physical system, tokens signify number of resources or whether a condition is true or
whether a process is ongoing, depending upon what the place models, practical constraints limit
the maximum number of tokens that each place can hold. Hence, a Finite Capacity Petri net is
defined as one where each place has a maximum token carrying capacity.

2.2.7 Firing Rule

A transition is said to be enabled when each one of its input places is marked with at least one
token (This statement assumes the net to be an ordinary one, if the net is non-ordinary then for
enabling, each input place of the transition must be marked with at least w tokens, where w is the
weight of the input arc of that transition).

An enabled transition may or may not fire depending on whether the event actually takes place
or not. But once enabled, a transition has the potential to fire; hence, the transition is called
potentially friable.

Firing enabled transitions performs execution. The execution of a Petri net causes its marking
to change by removing tokens from its input places and depositing into each of its output places.
Transition firing continues as long as there exists at least one enabled transition. When there are
no enabled transitions, the execution halts.

In mathematical terms, a transition Tt ∈ is enabled iff)(pM ≥),(tpI ;∀ p ∈ P . If an
enabled transition t fires then it causes a change in marking from)(pM to)(pM ′ given by the
equation:

)(pM ′ =),(),()(tpOtpIpM +− ; ∀ p ∈ P .

As stated above, firing is a two-step process. First step involves removal of tokens from all input
places and the second is depositing the tokens in the output places of the particular transition.
The above equation clearly depicts this fact.),(tpI− stands for the first step and

),(tpO+ stands for the second.
The firing rule, when applied to finite capacity Petri nets, is called Strict Firing Rule and when

applied to infinite capacity Petri nets, is called Weak Firing Rule. Thus transition enabling
condition for finite capacity nets has an additional restriction that the number of tokens in each
output place of the transition can not exceed the maximum token carrying capacity)(pC .

Theorem: Any pure finite capacity Petri net (where strict firing rule is applicable) can be

transformed into a corresponding pure Petri net, where weak firing rule is applicable.

Thus one can apply weak firing rule for both finite and infinite capacity nets. Note that the

theorem is stated with an additional constraint that the net has to be pure. As already mentioned
in Art 2.2.5 this constraint can always be relaxed by making an impure Petri net pure.

Corollary: Weak firing rule can be applied to all Petri nets irrespective of capacity constraint and

purity constraint.

The transformation which converts a finite capacity net),(0MN , where strict firing rule is

applicable to a corresponding Petri net),(0MN ′′ , where weak firing rule is applicable, is called
Complementary-Place Transformation. The procedure for obtaining the transformation is given by
the following two steps:

Step 1: Add a complementary place p′ for each place p , where the initial marking of p′ is

)()(00 pMpCM −=′ .

Step 2: Between each transition t and a subset of complementary places (p′), new arcs (pt ′,)

and/or (tp ,′) (input and/or output) are drawn such that),(),(tpwptw =′ and

 7

),(),(ptwtpw =′ ; this ensures that the sum of tokens in place and in its complementary
place p′ equals its capacity)(pC for each place p , before and after the transition t .

Example 2.4

The net in Fig. 2.4(a) is a finite capacity net where strict transition rule is applicable. At the initial
marking (1 0), the only enabled transition is 1t . After 1t fires, new marking becomes (2 0), where

2t and 3t are enabled. If 2t fires then next marking becomes (0 0) and if 3t fires then the next marking

becomes (0 1). Continuing this process one can obtain the reachability graph of the PN as shown
in Fig. 2.4 (c) (reachability trees and graphs are introduced in Chapter 5). Using Complementary-
place transformation one can transform the net in Fig. 2.4(a) to the one in Fig. 2.4(b) which have
the same reachability graph Fig. 2.4(c). The first step for the transformation is to introduce two
complementary places 1p′ and 2p′ with initial markings)(10 pM ′′ =)()(101 pMpC − = 2 – 1 = 1.
In the next step, new arcs are added between each transition t and some complementary
places, so as to keep the sum of tokens in each place-complementary place pair constant, the
value of this constant being capacityC of the place. For example, since),(11 ptw = 1,

),(11 tpw ′ = 1. Similarly,),(13 ptw ′ =),(31 tpw = 2 and),(32 tpw ′ =),(23 ptw = 1, since firing 3t

removes 2 tokens from the place p1 and adds 1 token in 2p . Hence a 2-weighted arc is drawn

from 3t to 1p′ and unity-weighted arc is drawn from 2p′ to 3t . Similarly other additional arcs are
drawn to convert the finite capacity net an infinite capacity one. It can be verified that both the
nets in Fig. 2.4 have isomorphic reachability graphs.

p2 p1

 t1

t1

p2

p1 p′1

1 0

2 0

0 10 0

1 1

2 1

(a) (b)

(c)

 t1
 t1

t2
t4

t4 t1

 t1

t2

t4

t3

C (p1) = 2 C (p2) = 1
t4 t3

t2
t2

p′2

t4
2

2 2
2

2

Figure 2.4: (a) Finite-capacity Petri net, (b) Infinite Capacity Petri net after complementary-place transformation,
(c) The Complementary-place transformation preserves the reachability graph

2

t3

 8

Chapter 3

Modeling with Petri Nets

3.1 Petri Nets as Modeling Formalism

Modeling a hybrid system has been attempted from many different perspectives. A hybrid system
consists of some continuous functional relations, some discrete signals and some event driven
occurrences. Some attempts have gone to model the entire system in continuous domain by
making some simplified assumptions; some have attempted to model the system entirely in
discrete domain by discretizing the continuous domain by some suitable assumptions. Of course,
all these attempts produce results at the expense of losing information about the system due to
modeling assumptions. Petri net is an efficient modeling tool for modeling hybrid system since it
can inherently capture DEDS and properties like concurrency, asynchronous behavior, non-
determinism are intrinsic to Petri nets. This chapter introduces Petri net as a modeling tool and
explains how efficiently it can express uncertain and hybrid nature of complex systems.

3.2 Basic Modeling Constructs

In this section, some basic situations are taken which are encountered often during modeling a
physical system. This section describes how Petri net handles these real life modeling situations,
thus revealing the modeling power and ease of representation of Petri nets.

3.2.1 Sequential execution

Sequential execution poses a precedence constraint among the activities (transitions). In Fig 3.1
transition t2 can fire only after the firing of t1.

t2 t1

Figure 3.1: Transition t1 occurs first and then transition t2 occurs

p1 p2 p3

 9

3.2.2 Synchronization

Petri nets can successfully capture the synchronization mechanism in the modeling phase. In Fig
3.2 transition t1 will fire only when the empty input place gets a token. Thus, the three input places
of t1 are synchronized for the firing of transition t1.

3.2.3 Conflict

In Fig 3.3 transitions t1, t2 and t3 are in conflict. All three transitions are enabled but only one can
fire at a time. Hence, choice has to be made regarding which transition will be fired. Firing one will
lead to the disabling of other transitions. The conflict is resolved in a non-deterministic way (e.g.
by assigning appropriate probabilities to the conflicting transitions).

3.2.4 Concurrency

In Fig. 3.4 transitions t1, t2 and t3 are concurrent. Concurrency is characterized by the existence
of a forking transition that deposits tokens simultaneously in two or more output places. In Fig 3.4
t0 is the forking transition.

Petri pointed out that concurrency can be thought of as a binary relation which has:
(1) Reflexive property (event A is concurrent with itself),
(2) Symmetric property (event A and event B are concurrent implies event B and event A are
concurrent).

t1

 t1 t2 t3

 t1 t2 t3

 t0

Figure 3.2: Transition t1 fires when the place p2 gets a token so that all the input places of transition t1 have tokens

p1 p2 p3

p4 p5

p1

Figure 3.3: Transitions t1, t2 and t3 are in conflict

Figure 3.4: Transitions t1, t2 and t3 are concurrent

p1
p2 p3

 10

But concurrency does not have transitive property (event A and event B are concurrent, event B
and event C are concurrent togetherly, in general, does not imply event A and event C are
concurrent. Of course, this may happen in some special cases. Example: Zeroth Law of
Thermodynamics).

3.2.5 Confusion

Confusion occurs when conflict and concurrency co-exist. In such a situation, it is not clear that
whether a conflict is needed to be resolved or not, in going to the new state (marking). In Fig 3.5
transitions t1 and t3 are concurrent whereas transitions t1 and t2 are in conflict. Also t2 and t3 are in
conflict.

Confusions can be of two types: Symmetric Confusion and Asymmetric Confusion. Fig 3.6 (a)
shows Symmetric Confusion where t1 and t3 are concurrent (both enabled and firable) and at the
same time they are in conflict with t2.

In Fig 3.6 (b), t1 and t2 are concurrent and if t1 fires first, then t3 and t2 will be in conflict. This
situation is called Asymmetric Confusion. Asymmetric confusion occurs when one place feeds to
a set of transitions via output arcs from it and there exists another place in the net which feeds to
a subset of those transitions. In Fig 3.6 (b) the place p2 feeds to a set of transitions {t2, t3} via
output arcs from p2 and there exists a place p3 in the net which feeds to {t3} ⊆ {t2, t3}.

 t1 t2 t3

p1
p2

p3

t4

Figure 3.5: Transitions t1, t2 and t2, t3 are in conflict but t1, t3 are concurrent

p1

p2

 t1

t2

t3

p1

p2

 t1

t2

p3

t3

p5

p4

(a) (b)

Figure 3.6: (a) Symmetric Confusion (b) Asymmetric Confusion

 11

3.3 Primitives for Programming Constructs

This section describes basic programming constructs in Petri net formalism. This, in turn, will
express the modeling power of Petri nets and these constructs will be used in subsequent
modeling examples.

3.3.1 Selection (if – else)

(a) If condition A then do activity X, else do activity Y.

(b) If condition A and condition B hold, then do activity X.

3.3.2 Case (Switch) statement

If Case A do activity P, if Case B do activity Q, if Case C do activity R, if Case D do activity S.

Figure 3.9: Switch statement

Figure 3.8: If – else with and operator

Figure 3.7: If – else condition

A
X

Y

X

A

B

A B C D

P Q R S

 12

3.3.3 While loop

While condition A holds, do activity X.

3.3.4 Repeat (for) loop

For condition A, do activity X.

3.3.5 Precedence

Activity X should precede activity Y.

3.3.6 Timed occurrence

After k seconds do activity X

Figure 3.10: While loop

Figure 3.11: For loop

Figure 3.12: Precedence relation

Figure 3.13: Timed transition

A

X

A X Null

X

Y

X

k

 13

3.3.7 Either – or (Mutual exclusion)

(a) Either do activity X or do activity Y.

(b) Either do activity X or do activity Y with preference to activity X (preferential either - or)

Figure 3.14: Either – or statement

Figure 3.15: Preferential either – or statement

X

Y

X

Y

 14

Chapter 4

Sub-structures of Petri Nets

4.1 Importance of sub- structures

Modeling and analyzing a Petri net as it is, often becomes cumbersome and tedious job because
even for a physical system with modest complexity, the Petri net size becomes unmanageable
and analyzing the model becomes a daunting task. Hence it may be helpful if one can identify
some sub-structures in the entire large Petri net and then model and analyze those substructures;
in that case it becomes a simpler problem. Moreover if certain properties can be established for
these sub-structures then identifying one such sub-structure will immediately allow one to assign
those properties without any analysis. Last but not the least, if certain properties can be shown to
be preserved by these sub-structures then those properties will also hold for the composition of
them i.e. for the original Petri net. This justifies the study of sub-structures of a Petri net.

4.2 Sub-structures of Petri nets

4.2.1 Source and sink

A Source Place is a place that has no input transition i.e. it has no input arcs, only output arcs
emanate from a source place. A Sink Place is one that has no output transition i.e. it has no
output arcs, only input arcs converge to a sink place.

Similarly, a Source Transition is a transition that has no input place i.e. it has no input arcs, only
output arcs emanate from a source transition. A Sink Transition is one that has no output place
i.e. it has no output arcs, only input arcs converge to a sink transition.

 Figure 4.1: (a) source place, (b) sink place, (c) source transition, (d) sink transition

(a) (b) (c) (d)

 15

Fig 4.1 (a) and (b) shows source and sink places respectively while (c) and (d) shows source and
sink transitions respectively. Mathematically, • p = ∅ represents a source place, p • = ∅ represents
a sink place, • t = ∅ represents a source transition and t • = ∅ represents a sink transition.

4.2.2 Directed path (DP)

A Directed path (DP) is a path formed by a finite sequence of (not necessarily distinct) places and
transitions, present in the Petri net.

Example 4.1

Ina general Petri net (n places and m transitions) p1, t2, t1, p3, p8, t2, t4 can be a directed path
(DP). Note that a DP need not contain a sequence where places and transitions are alternative
elements.

 4.2.3 Simple Directed path (SDP)

A simple directed path of a PN, N is a sequence of transitions and places given by:
Θ = rr tptpt ...110 ; containing no place or transition more than once such that

0),(1),(),([;,...,2,1 1 =∧===∀ − tpItpOtpIri iiiii

if 0),(=∧≠ tpOtt ii if 0),(1 =∧≠ − ii tpItt

if 0),(1 =∧≠ −ii tpOpp if ipp ≠]
Note that a single transition can be considered as a SDP with no places.

4.2.4 Looping of paths (LOP)

Given a Petri Net N, and k SDPs irioi tti ...=Θ),...,1(ki = , the k paths are said to be looped in

N if)],(),()(1),(),([|),...,1(, 00 iriiirii tpOtpIpptpOtpIkiPp ′=′≠′∀∧===∀∈∃
In simple terms, the k-paths are looped if the input (output) transitions of all paths input from

(output to) the same place p with a single arc [3].

4.2.5 Directed circuit (DC)

A Directed circuit (DC) is a closed directed path i.e. DC is a DP from one node (place or
transition) back to itself.

Example 4.2

Ina general Petri net (n places and m transitions) p1, t2, t1, p3, p8, t4, p1 can be a directed circuit
(DC).

4.2.6 Pure Directed path (PDP)

A Pure Directed Path (PDP) is a directed path (DP) such that each place in the DP has exactly
one input and one output transition, and each transition in the DP has exactly one input and one
output place except starting or ending ones (place or transition).

Mathematically PDP is a DP such that other than a starting or ending node,
1|}{||}{||}{||}{|,, 11 =•=•=•=•∈∀∈∀ ttppTtPp ; where P1 and T1 are the sets of places and

transitions in the directed graph [5].
This means that, the Petri net might have places which have multiple input and/or output

transitions; and/or the net might have transitions which have multiple input and/or output places.

 16

But when the DP contains no such nodes which have multiple input and/or output nodes (of other
type; recall a Petri net has two kinds of nodes – places and transitions); then only a DP is called a
PDP. So a PDP is a very special kind of DP.

4.2.7 Pure Directed circuit (PDC)

A Pure Directed Circuit (PDC) is a directed circuit (DC) such that each place in the DC has
exactly one input and one output transition, and each transition in the DC has exactly one input
and one output place.

Mathematically PDP is a DP such that 1|}{||}{||}{||}{|,, 11 =•=•=•=•∈∀∈∀ ttppTtPp ;
where P1 and T1 are the sets of places and transitions in the directed graph.

This means that, the Petri net might have places which have multiple input and/or output
transitions; and/or the net might have transitions which have multiple input and/or output places.
But when the DC contains no such nodes which have multiple input and/or output nodes (of other
type; recall a Petri net has two kinds of nodes – places and transitions); then only a DC is called a
PDC. So a PDC is a very special kind of DC.

Note that the concept of path and circuit are borrowed from graph theory. In the formal

definition of Petri net (Art 2.2.1), it was stated that Petri net is a bipartite, weighted, directed
multigraph. The meaning of this sentence can be made clear now. A graph has only two
elements: vertices and edges. A graph is called bipartite when its vertices can be grouped into
two subgroups. In Petri graph context the vertices are comparable to nodes which can be
grouped into two subgroups: places and transitions. Since Petri graph contains weighted and
directed arcs, it is a weighted and directed graph. Petri graph is called a multigraph since multiple
arcs can be drawn from one node to another. In a directed graph, a path is a finite sequence of
edges neee ,...,, 21 where nivvei ii ,...,3,2,1);,(1 == − . A path is called simple if all of its edges
are distinct and is called elementary if all of its vertices are distinct (which implies edges are also
distinct). A path is said to be open if nvv ≠0 and closed if nvv =0 . A closed path is called a
circuit. Just like simple and elementary path, a simple circuit means all edges are distinct and an
elementary circuit means all vertices are distinct (except of course, the first and last, which
coincide). The length of a path or circuit is the number of edges in it. These basic notions of graph
theory are introduced here in order to clarify the origin and significance of terms introduced in Art
4.1. This allows one to apply the concepts of simple and elementary paths and circuits in Petri
graph context. As it will be evident in the subsequent part of this report, some more concepts will
be taken from graph theory to draw important conclusions about Petri net.

4.2.8 Subnet (SN)

A subnet (SN) of a PN, N = (P, T, I, O) is another PN, N1 = (P1, T1, I1, O1) such that P1⊆ P,
T1⊆T and I1 and O1 are simply I and O projected onto (P1 x T1). Mathematically I1 and O1 are
given as follows:
 I1: (P1 x T1) → No

+

 O1: (P1x T1) → No
+

Following the alternative definition of PN, a subnet N1 = (P1, T1, F1, W1) of the original Petri
net N = (P, T, F, W) satisfies that, P1⊆ P, T1⊆T, F1 = F∩((P1 x T1)∪(T1 x P1)), where F and F1
are the set of arcs of N and N1 respectively. Arc weights are represented by the weight functions
W and W1 respectively.

If a subnet of a Petri net is defined with initial marking M0= m0, in that case M0
1 = m01⊆M0 = m0.

For a general marked PN and subnet of that, M1⊆ M.
 The above discussion essentially means, subnet is a subset of elements of the original PN, with
all arcs between those nodes in the subset intact and no other arcs present. A large PN is nothing
but a composition of smaller component subnets. Since subnets of a PN are themselves distinct
Petri nets, subnets can not share places [4].

 17

4.2.9 P-Subnet (PSN)

A subnet (SN), N1 of a PN, N is called a Place subnet or P-subnet (PSN), iff T1= •∪• }{}{ 11 PP .

4.2.10 T-Subnet (TSN)

A subnet (SN), N1 of a PN, N is called a Transition subnet or T-subnet (TSN), iff
P1= •∪• }{}{ 11 TT .

4.2.11 RP-Subnet (RPSN)

A P-subnet (P1, T1, I1, O1) is called a Restricted P-subnet (RPSN) if •=•= }{}{ 111 PPT .

The notion of RPSN was first introduced by V. K. Agrawal in 1986 [5]. The importance of this
class of subnet lies in computing invariants, which will be discussed later in this report.

4.2.12 Dual net

The Dual of a PN, N = (P, T, I, O) is given by)ˆ,ˆ,ˆ,ˆ(ˆ OITPN = where

OIPTTP === ˆ,ˆ,ˆ and IO =ˆ . .
Intuitively, the dual of a PN results when its places are changed to transitions and transitions

are changed to places.

Theorem: The dual of an unmarked PN is also an unmarked PN.

Proof: Say the original unmarked PN is given by N = (P, T, I, O). From the definition of dual,
)ˆ,ˆ,ˆ,ˆ(ˆ OITPN = , the dual of N, is a four tuple.

Since N was an unmarked net, neither T nor P contain any unconnected elements, so neither
do TP =ˆ or PT =ˆ . Hence, M̂ is an unmarked net.

Theorem: The dual of a dual net is original Petri net.

Proof: This is obvious, by repeated application of the definition of Dual.

Theorem: If an unmarked PN is the subnet of other iff dual of first is the subnet of dual of second.

Proof: Say the first PN is given by N = (P, T, I, O). Given that, N is the subnet of another PN,

),,,(OITPN ′′′′=′ i.e. .NN ′⊆ Now by the definition of subnet, TTPP ′⊆′⊆ , ; I and O are
I ′ and O′ projected onto)(TP ′×′ .

The definition of dual means that
 PP ′⊆ ˆˆ [Since TP =ˆ and TP ′=′ˆ]; TT ′⊆ ˆˆ [Since PT =ˆ and PT ′=′ˆ]

Again, Î is a projection of I ′ˆ [since OI =ˆ and OI ′=′ˆ]

 Ô is a projection of O′ˆ [since IO =ˆ and IO ′=′ˆ]

And thus N̂ is a subnet of N ′ˆ .

Since the dual of N̂ is N (from Theorem 3), the above argument with N̂ for N gives the reverse
implication. This completes the proof.

 18

If dual is thought of as an operation instead of a sub-structure, the above three theorems can be
summarized as follows: the dual operation preserves the unmarked, dual and subnet properties.

4.3 Other important Petri net structures

Below mentioned are some important definitions on Petri net structures. The idea behind
grouping them separately is that they are not sub-structures of a Petri net. This section introduces
the concepts of composition of nets which is a super-structure of nets, projection of nets which is
a transformed structure of nets, connectivity and strong connectivity of nets which is a special
structure of nets and synchronic distance which is a special measurement structure for transitions
of nets.

4.3.1 Composition of Petri nets and Composed PN

The composition operation can be thought of set theoretic analogue of union. So the problem is
how to unite two or more Petri nets to get a single PN, called Composed PN.

Given two nets),,,(11111 OITPN = and),,,(22222 OITPN = with initial marking 10m and 20m .

Let, },...,,{ 21 kθθθ=Θ is a set of simple paths present in both the nets.

Let’s assume, =∈Θ∈∃∩]})[(|{\21 θθ ppPP ∅ and =∈Θ∈∃∩]})[(|{\21 θθ ttTT ∅.

Let’s also assume that)]()()[(201021 pmpmPPp =∩∈∀ .

The Concurrent Composition of 1N and 2N is the net),,,(OITPN = with initial marking 0m .

Where, ;; 2121 TTTPPP ∪=∪=

),(),(tpItpI i= If]})[2,1{(ii TtPpi ∈∧∈∈∃
 = 0 otherwise.

),(),(tpOtpO i= If]})[2,1{(ii TtPpi ∈∧∈∈∃
 = 0 otherwise.

)()(100 pmpm = If 1Pp ∈

 =)(20 pm otherwise.

The composed net N is denoted as 21 || NNN = .

4.3.2 Projection of Petri nets and Projected PN

Let N be a composed net: nNNNNN ||...|||||| 321= and let m be a marking. Let σρbe a firing
count vector (will be defined in Chapter 5) and let σ be a firing sequence (will be defined in
Chapter 5) defined onσρ .

The projection of m over iN , denoted as)(miπ , is the vector obtained from m by removing all

the components associated to the places not present in iN .

The projection of σρover iN , denoted as)(σπ ρ
i , is the vector obtained byσρ , removing all the

components associated to transitions not present in iN .

The projection of σ over iN , denoted as)(σπ i , is the firing sequence obtained byσ ,

removing all the transitions not present in iN .
It follows that,
 (1) N generates the string σ sequencing from 0m to m .

 (2) iN generates)(σπ i sequencing from)(0miπ to)(miπ .

 19

4.3.3 Inverse of a PN or Reversed PN

Inverse of a PN or Reversed PN is defined as one which results if the direction of each arc is
reversed in the original Petri net.

Thus 1−N is obtained from N by reversing all arc directions of N . Mathematically, if
),,,(OITPN = then by definition 1−N),,,(11 −−= OITP where OI =−1 and IO =−1 .

Following the alternative definition of PN,),,,(WFTPN = and),,,(1 1 WFTPN −=− . Note
that in the inverse PN, the places and transitions are kept intact. Only the arc direction reverses.
This is the basic difference between reversed net and dual net. In the later, as defined earlier, in
addition to arc direction reversal, places and transitions are also swapped.

4.3.4 Connectivity and Strong Connectivity

Before giving formal definition of PN connectivity, it is worthwhile to look into the origin of this
concept in graph theory. A directed graph is called connected if its corresponding undirected
graph (formed from the directed graph by removing its edge arrows) is connected. An undirected
graph is connected if there exists at least one path between any two vertices.

A directed graph (often called digraph) is strongly connected if for every two vertices
ba, ∈ V (set of vertices), there is a path from a to b and a path from b to a as well.
A PN is said to be connected if there exists at least one path between any two nodes (of

course, the two nodes have to be transition-place doublet as no path can exist between two
transitions or two paths).

Mathematically a PN is said to be connected if ∃ a path between any arbitrarily chosen place-
transition pair),(ji tp . A PN is said to be strongly connected if ∃ reversible paths between any

arbitrarily chosen place-transition pair),(ji tp .

4.3.5 Traps and Siphons

4.3.5.1 Traps

A Trap is a state of places in a PN, such that such that every transition that inputs from one of
these places, also outputs to one of these places [9].

Formally, a non-empty subset of places Q in a PN, is called a trap if QQ •⊆• , i.e. every
transition having an input place in Q has an output place in Q [2].

a

b

c

d

e

f

Figure 4.2: Unconnected graphs [12]

 20

Example 4.3

In Fig. 4.3 the three places shown, form a trap. From the figure, }{ 1tQ =• ; },{ 21 ttQ =• ;

QQ •⊆• . Token count in this trap remains the same by firing 1t but increases by firing 2t .

4.3.5.2 Siphons

A Siphon (or Deadlock) is a set of places in a PN, such that every transition that outputs to one of
these places also inputs from one of these places [9].

Formally, a non-empty subset of places S in a PN, is called a siphon if •⊆• SS , i.e. every
transition having an output place in S has an input place in S [2].

Example 4.4

In Fig. 4.3 the three places shown form a trap. From the figure, }{ 1tS =• ; },{ 21 ttS =• ;

•⊆• SS . Token count in this siphon remains the same by firing 1t but decreases by firing 2t .

Table 4.1 provides a quick overview of the properties of traps and siphons.

S

Q

 t1 t2

Figure 4.3: Traps

Figure 4.4: Siphons

 t1 t2

 21

Properties

Trap

Siphon

Behavioral
property

By definition, once a place in a trap
has a token, there will always be a
token in at least one of the places
in the trap. Hence, a trap having at
least one token can never lose all
of its tokens. In other words, if a
trap is marked under some
marking, it remains marked under
each successor marking.

By definition, once all places in a
siphon have no token, there will never
be a token in any one of the places in
the siphon. Hence, a siphon having
lost all of its tokens can never obtain a
token again. In other words, if a
siphon is token-free under some
marking, then it remains token-free
under each successor marking.

Union Union of two traps is again a trap
[2].

Union of two siphons is again a
siphon [2].

Nominal or Basic

A trap is called a basic trap or
nominal trap if it can not be
represented as a union of other
traps.

A siphon is called a basic siphon or
nominal siphon if it can not be
represented as a union of other
siphons.

Minimal A trap is said to be minimal if it
does not contain any other trap.

A siphon is said to be minimal if it
does not contain any other siphon.

Theorem: All minimal traps (siphons) are basic traps (siphons) but not all basic traps (siphons)

are minimal.
Theorem: A subset of places in the reversed net 1−N will be a siphon (trap) iff it is a trap (siphon)

in the original net N .

Theorem: Traps and siphons are duals of each other.

Example 4.5

Table 4.1: Properties of traps and siphons

Figure 4.5: Example of traps and siphons

p1

p2

 t1

t2

p3

t3

p4

t4

 22

Let },,{ 3211 pppS = ; },,{ 4212 pppS = ; },,,{ 43213 ppppS = ; },{ 324 ppS = and

},,{ 4325 pppS = .Then, one can verify that },,,{},,{ 432114211 ttttStttS =•⊆=• .Thus 1S is a

siphon. Again },,{},{ 4214414 tttSttS =•⊆=• . Thus 4S is a trap. Similarly it can be shown that

2S is a siphon, 3S is both a siphon and a trap and 5S is a trap. Also, 1S and 2S are both minimal

and basic siphons. 3S , 4S and 5S are basic traps, 3S and 5S are not minimal traps.

4.3.5.3 TC and SC net

A PN in which the set of places in every directed circuit (DC) is a trap (siphon), is called a Trap-
circuit net (Siphon-circuit net) or TC (SC) net.

4.3.5.4 TCC and SCC net

A PN in which the set of places in every directed circuit (DC) contains a trap (siphon) is called
TCC (SCC) net.

 23

Chapter 5

Analysis of Petri Nets

5.1 Importance of analysis

The objective of using Petri nets in system study is to draw important conclusions about the
system without going for time and cost ineffective trial and error prototyping. To do so, the first
step is to model the system. Once a model is ready, the next task is to analyze the model to draw
conclusions about the properties of the model and hence about the actual system. Then only one
can answer questions like what the system behavior is supposed to be under specific operational
conditions, what properties are inherent to the structure of the net, what to expect and what not to
expect from the system during operation and whether there is any pitfall in the system design
which must be avoided in operational phase.

The first step i.e. modeling has been addressed in Chapter 3. This chapter deals with analysis
of the modeled system. Chapter 4 serves as a link between Chapter 3 and Chapter 5, since
dealing with substructures eases both modeling and analysis.

It is worthwhile to mention that some authors prefer to discuss PN properties and PN analysis
separately. This approach may seem more systematic but in the process it can only introduce
behavioral properties, because definition and understanding of structural properties are so closely
related to structural analysis that they can not be discussed separately. Keeping this in mind, this
report discusses the properties and analysis techniques together to emphasize the fact that
analysis is more than a mere tool, the analysis methods themselves reveal elegance of PN model
and its properties.

5.2 Analysis approaches

There are three major approaches for PN analysis:(1) Behavioral approach, which is a tree based
approach, (2) Structural approach, which is a matrix based approach and (3) Reduction or
Refinement approach, which is a net simplification approach. These three approaches are
discussed here.

5.2.1 Behavioral approach

This approach deals with the behavioral properties of PN. Behavioral properties are those which
are dependent on the initial marking. In the following discussion, behavioral properties are treated
in detail. Then effort has been given to make conclusions about them from analysis.

5.2.1.1 Reachability

 24

The Reachability Problem is stated as follows. Given a Petri net, given an initial marking 0m ,

given another marking rm ; the question is whether there exists a sequential firing of transitions

which will bring the net from 0m to rm . If the answer is 'yes', then rm is said to be Reachable

from 0m .The set of all possible markings reachable from 0m , is called the Reachability Set,

denoted by the symbol R(0m) for a given PN. Note that reachability set is defined for a given PN,

for a given initial marking 0m . This dependency on initial marking clearly reveals that reachability
is a behavioral property.

It may happen that rm is reached from 0m by the firing of a single transition, in that case rm is

said to be immediately reachable from 0m . In the general case, rm is reached via the sequential

firing of r transitions, called the firing sequence, denoted by
rjjjr ttt ...

21
=σ ; where],1[mr ∈ ,

m being the total number of transitions present in the PN. This means that firing sequence

rσ contains an ordered string of transitions, the length of the string being equal to r . Note that

the transition string defining firing sequence may contain repetition. Symbolically, 0m rσ rm .

The fact that rm is reachable from 0m via rσ , is sometimes represented [14] by the notation

0m [rσ > rm . For a given PN, the set of all possible firing sequences from initial marking 0m is

denoted by),(0mNL or simply)(0mL .

Example 5.1

Suppose a PN has total 7 transitions)7(=m . Let there exists a firing sequence of length

4)4(=r , which brings the PN from an initial marking 0m (given) to another marking 4m (given).

This firing sequence which brings 0m to 4m is given by 4σ = 3231 tttt implying

2,3,1 321 === jjj and 34 =j . Symbolically, 0m 4σ 4m . In alternative notation,

0m [4σ > 4m .

With every firing sequence rσ , there exists an associated)1(×m Firing Count Vector, which is

a column vector (single column, multiple rows), rσρ whose elements correspond to number of

times that particular transition has fired in that firing sequence rσ . Since this vector keeps a count
of the number of times a particular transition gets fired in a particular firing sequence, hence the
term Firing Count Vector.

Example 5.2

In the previous example, corresponding to the firing sequence 4σ = 3231 tttt , there exists an

associated (7 x 1) Firing vector 4σρ , which is a column vector, given by 4σρ = T)1120000(, which

means 1t has fired only once, 2t once, 3t twice and 7654 ,,, tttt never, in that firing sequence 4σ .

With the above understanding of firing count vector, now one can formally represent Firing

Count vector as rσρ = T
mnnnn)....(321 ; where kn refers to the number of firings of kt .

A somewhat subtle point is to be noted here. It was mentioned that with every firing sequence
there exists an associated firing count vector. But this is not a one-to-one mapping, in the sense
that, given a firing count vector, there exists more than one firing sequences. The reason of this is
that firing sequence gives very precise information about which transitions are fired, how many

 25

times they are fired and in which order; whereas firing count vector tells which transitions are fired
and how many times they are fired – it does not talk about the order of firing. For the firing count
vector rσρ = T

mnnnn)....(321 , there exists a total of SN firing sequences where SN is given by:

SN =
]!!...![

]!...[

21

21

m

m
nnn

nnn +++
=

∏

∑

=

=
m

i
i

m

i
i

n

n

1

1

)!(

)!(

Example 5.3

In the previous example, corresponding to the firing vector 4σρ = T)1120000(, one can associate a

total of SN =
]!2!1!1[

]!211[++
=12 firing sequences, 4σ = 3231 tttt being one among those twelve.

With all these definitions above, it is better to have a fresh look at the reachability problem.

Equivalent to the earlier definition of reachability problem, one can give an alternative definition of
Reachability Problem as one, where given a PN with marking m , given a marking m′ , it is
needed to determine whether m′)(mR∈ . A related problem which is slightly more general, is the

Coverability Problem, defined as, given a PN with initial marking 0m , given a marking m′ , is

there a reachable marking)(0mRm ∈′′ , such that m ′′ covers m′ ? In order to answer these
questions, it is required to exhaustively enumerate all the possible reachable marking by firing the
enabled transitions one by one, starting with an initial marking. After each firing one will reach a
new state (marking). When all the reachable states (markings) have been enumerated, then one
can search for the desired state (marking). If it is present, then one can say that, the desired state
(marking) is reachable from the initial marking by the PN. This process results in a tree
representation of the markings. Each node of the tree represents marking generated by its parent
marking and each arc represents a transition firing, which transforms one marking to another.
Such a tree is called a Reachability Tree,),(0mNTT = .

Example 5.4

)1000(0 =Tm

)0100(1 =Tm

)0010(1 =Tm)0001(2 =Tm

p1 p2

 t1

t2
p3

t3
p4

 t1

t2 t3

Figure 5.1: (a) Petri net graph, (b) reachability tree for (a)

(a) (b)

 26

In Fig. 5.1 a PN and its reachability tree is shown. It can be noted that transitions are marked
along the arcs of the tree and conflict (32tt) can be effectively represented in the tree as shown.

It is, however, very much possible that the Reachability Tree could grow indefinitely. To
circumvent this problem, the concept of 'pseudo-infinity' is introduced, so that the tree size can be
kept finite. 'Pseudo-infinity', as the name suggests, can be thought of as a finite representation of
infinity. 'Pseudo-infinity' is denoted by the symbol ω which is subject to the following
properties:ω a> ,ω ≥ ω, ω =± a ω; where a is any integer.

With the above concept of 'pseudo-infinity'(ω) one can always keep the tree finite. When the
(ω) symbol is absent (truly finite size tree), then the term Reachability Tree is used. If, however,
the (ω) symbol is present (truly infinite size tree, represented as finite size tree by introducingω)
then the term Coverability tree is used. This means the term Coverability Tree is more general.
When there is no (ω) symbol present then the terms Reachability Tree and Coverability Tree are
synonymous. Otherwise the term Coverability Tree should be used.

 Now the question is, given a PN),(0mN , how to construct the coverability tree. The
following algorithm [2] is used for this purpose.

Algorithm:

Step 1: Label the initial marking 0m as the 'root' and tag it 'new'.
Step 2: While 'new' markings exist, do the following:
 Step 2.1: Select a new marking m ;
 Step 2.2: If no transitions are enabled at m , then tag as m 'dead-end';

Step 2.3: If m is identical to a marking on the path from the 'root' to m , then tag m as 'old'
and go to another new marking;

 Step 2.4: While there exist enabled transitions at m , do the following for each enabled
 transition t at m :
 Step 2.4.1: Obtain the marking m′ by firing t at m .

 Step 2.4.2: On the path from root to m , if there exists a marking m ′′ such
 that m′ nipimpi ,...,2,1)()(=∀′′≥ and mm ′′≠′ i.e. m′

covers m ′′ , replace m′)(ip by ω wherever m′)()(ii pmp ′′≥ :

Step 2.4.3: Introduce m′ as a node in the tree, draw an arc with label t
from m to m′ , and tag m′ as 'new'.

Example 5.5

p1

p2

 t1

t2 p3

t3

p4

t4

p5

t5

(a)

 27

Example 5.5 (contd.)
)01001(0 =Tm

)00010()02000(
 Deadlock

)10100(

)10010(

)0100(ω

)0010(ω

While constructing reachability(coverability) tree, the nodes of the tree corresponding to new

markings are called Frontier Nodes, those corresponding to old markings are called Duplicate
Nodes and those corresponding to markings having tag 'dead-end' are called Terminal nodes.

Often one is interested in the markings of a subset of places and does not bother about the rest
of the places in the net. This approach leads to the so called Submarking Reachability problem.
This problem aims to find if ∃ an)(0mRm ∈′ , where m′ is any marking whose restriction to a

given subset of places agrees with that of a given marking m [2]. More formally, for PP ⊆′ and a
marking m′ , does there exist a),(0mNRm ∈′′ such that Pppmpm iii ′∈∀′=′′)()([7]?

Submarking reachability problem is important for model checking and verification. One must
give answer in the form that this, this, this markings should never be reached during system's
operational life-span. The answer must be given as negation since only negation is conclusive [7].

Similarly, one can define Zero Reachability Problem which asks if the specific marking with zero
tokens in all places, is reachable. Formally, is),(0mNRm ∈′ with Pppm ii ∈∀=′ 0)(? (i.e.

is),(0 0mNR∈ ?)
In a similar way, one can define Single Place Zero Reachability Problem which asks if it is

possible to empty all the tokens out of a particular place. Formally, for a given place Ppi ∈ ,

does there exist),(mNRm ∈′ with 0)(=′ ipm ?
In the context of reachability (coverability) problem, it can be a good idea to mention other

important problems of PN. In PN context, the Reducibility problem is important. This problem
addresses the questions like whether a given problem can be reduced to another problem, whose
solution is already known. In the following example, reducibility problem is illustrated and Equality
and Subset Problems are also introduced.

 t1 t2

t4

t4

t3

t3
(b)

Figure 5.2: (a) Petri net graph, (b) coverability tree construction for (a)

 28

Example 5.6

Suppose it is desired to solve the Equality problem of PN, which says that, whether reachability
sets of given Petri nets are equal or not. Formally, given two Petri nets 1N and 2N given

by:),,,,(1011111 mOITPN = and),,,,(2022222 mOITPN = ; it is required to find

whether),(),(202101 mNRmNR = . Another important problem is the Subset Problem, which

seeks to determine whether),(),(202101 mNRmNR ⊆ .Now the equality problem can be

reduced to two subset problems since to show),(),(202101 mNRmNR = , it is sufficient to show

that),(),(202101 mNRmNR ⊆ and),(),(101202 mNRmNR ⊆ . Thus, the Equality Problem is
reducible to Subset Problem. This illustrates the concept of reducibility.

In the previous discussion, many types of reachability problems were introduced. Instead of

solving each of them separately, isn't it a nice idea if it can be shown that, at least some of them
are reducible to other problems? The following figure shows which reachability problems are
reducible to which problems.

 Reachability Problem

 Zero-reachability Problem

 Sub-marking reachability Problem

 Single-place zero reachability Problem

From now on, this report will use the term reachability tree for non-existence of omega case
and coverability tree for the trees where (ω) will appear. But, in a coverability tree, information is
lost through the use of the symbol (omega). Hence, if someone enquires whether a particular
state (marking) is reachable or not, then one may not be able to give any conclusive answer
using coverability tree, since information was lost during introduction of the symbol (ω). Thus the
reachability test from coverability tree is inconclusive.

5.2.1.2 Boundedness

A PN is called k-bounded with respect to an initial marking 0m , if each place in the net gets at

most k tokens for all markings belonging to the reachability set)(0mR , where k is a finite positive
integer.

Figure 5.3: Reducibility among reachability problems [7]

 29

Mathematically, for Boundedness it should always happen that with respect to an initial
marking 0m ,],1[)(nikpm i ∈∀≤ and this should happen)(0mRm ∈∀ .

If 1=k , then the PN is called Safe. Therefore, safeness is a special case of boundedness. In a
safe PN, a place can either contain no token or it can contain only one token. In a safe net, there
exists no such marking belonging to the reachability set (with respect to an initial marking) for
which number of tokens in any place of the PN exceeds one.

Example 5.6

The PN in example 5.4 is unity bounded and hence safe (by definition). The PN in example 5.5 is
unbounded. The coverability graph of Fig. 5.2 (b) shows unboundedness can be ensured from
reachability tree from the appearance of ω in the tree.

Now it is worthy to think what can be the physical significance of a bounded or safe net. Places

in the PN often represent buffers and registers which can store intermediate data. In this context,
a bounded or safe net means there will be no data overflows in the buffers or registers, no matter
what firing sequence is selected [2].

The reachability tree of an unbounded net will grow indefinitely and hence the symbol (omega)
is introduced and coverability tree is constructed using the above stated algorithm. Thus, the very
existence of the symbol (omega) in the tree means the PN is unbounded and the tree is
coverability tree. Moreover, it also indicates which places of the PN are unbounded. Thus from
reachability (coverability) tree one can make conclusions about boundedness (unboundedness)
of the PN model, and hence of the actual system. Thus the boundedness test from reachability
(coverability) tree is conclusive.

5.2.1.3 Liveness

A PN is called Live with respect to an initial marking, if for every marking belonging to the
reachability set; it is possible to fire all the transitions at least once by some firing sequence.

Mathematically, a PN is called Live with respect to an initial marking 0m , if)(0mRm ∈∀ , it is
possible to fire all the transitions at least once by some firing sequence.

The liveness property, as defined above, is a very strong property. However, it is impractical
and too expensive to verify such a strong property for systems like operating system of a
computer [2]. For this reason, the notion of liveness is relaxed by introducing degrees of liveness.
In this approach, degrees of liveness of individual transitions are introduced and then the degrees
of liveness of the entire PN are defined.

It is said that, a transition t of the PN,),(0mN is live at

Level 0: if t can never be fired. Then it is said that t is L0 live or t is dead.
Level 1: if t can be fired at least once in some firing sequence)(0mL . Then t is L1 live.
Level 2: if, t can be fired any finite positive integral number of times in some firing

sequence)(0mL . Then t is L2 live.

Level 3: if ∃ at least one infinite length firing sequence)(0mL∈ , in which t appears infinitely often.
Then t is L3 live.

Level 4: if t is L1 live)(0mRm ∈∀ . Then t is called L4 live or live. Note that liveness (i.e. L4
liveness) for a transition, just like liveness of a PN, is very strong property.

Just like degrees of liveness of a transition, now one can introduce degrees of liveness of the

entire PN. A PN,),(0mN is said to be Lk (Level k) live if every transition in the net is Lk

live, 4,3,2,1,0=k . Following this definition, a PN is said to be live (i.e. L4 live), if every transition
in the net is live (i.e. L4 live). Now one can appreciate the statement: liveness of a PN is a very
strong property. Degrees of liveness, is a relaxed property. In between these two concepts,

 30

another idea called Strict degrees of Liveness is introduced, which as a property, is stronger than
degrees of liveness but weaker than liveness. A transition is said to be Strictly Lk live if it is Lk live
but not L(k+1) live, where 3,2,1=k . Similarly, a PN is called Strictly Lk live if it is Lk live but not
L(k+1) live, 3,2,1=k .

Example 5.7

So far, liveness has been defined in terms of transitions. One can, however, define the liveness

with respect to marking also [8]. To do so, one has to define live and dead transition, live and
dead PN, and live, non-live and dead marking – all with respect to marking.
Live Transition: Let N be a PN and Tt ∈ ; t is said to be live iff)(0mRm ∈∀ ∃ a

marking)(0mRm ∈′ , such that m′ enables t or t is m′ enabled.

Dead Transition: Let N be a PN and t(belongs to)T; t is said to be dead iff)(0mRm ∈∀ , t is not
m -enabled.

Live PN: Let N be a PN. Iff Tt ∈∀ , t is live then the PN is said to be live.
Dead PN: Let N be a PN. Iff Tt ∈∀ , t is dead then the PN is said to be dead.
Live Marking: Let N be a PN. A marking)(0mRm ∈′ is said to be live

iff Tt ∈∀ , t is m′ enabled; where t is m′ enabled means the transition t gets
enabled by the marking m′ . But as it is clear from the definition itself, live
marking is a very strong condition.

Non-live Marking: Let N be a PN. A marking is called non-live if it is not live.
Dead Marking: Let N be a PN. A marking m is called dead iff no transition belonging to the

setT , is m -enabled.

Corollary: A dead-marking is a non-live marking but a non-live marking may not be a dead
marking.

It can also be perceived that

(1) all dead markings are deadends or terminal nodes but all deadends or terminal nodes are

not dead markings.
(2) a term called Dead-code is often found in the literature, existence of which means a part

of the net never gets executed (does not get any token) for a given initial marking. If the
PN is modeling an algorithm or code, that part of the code always remains idle. Hence
the name Dead-code.

Figure 5.4: Transitions 3210 ,,, tttt are L0 live (dead), L1 live, L2 live and L3 live respectively [2]

p1

p2 t1

t2

p3

t3

 t0

 31

After introducing the concept of liveness, now it's time to ask whether one can make

conclusions about liveness from the reachability (coverability) tree. Because of the loss of
information through the use of the symbol (omega), coverability tree can not give conclusive
answer about liveness [2]. However, one can give conclusive answer as long as the net is
bounded i.e. it is a reachability tree.

Example 5.8

)100(0 =Tm

)10(1 ω=Tm

)10(1 ω=Tm)01(2 ω=Tm
 ‘Old’

)01(2 ω=Tm)10(1 ω=Tm
 ‘Old’ ‘Old’

p1

p2

 t1

t2 p3

t3

t4

t4

 t1
p3

t3

p1 p2 t2

(a) (b)

 t1

 t1 t2

t4 t3

(c)

Figure 5.5: (a) A Live PN, (b) A non-live PN, (c) both (a) and (b) have same coverability tree (c) – hence liveness test from
coverability tree is inconclusive [7]

 32

5.2.1.4 Coverability

A marking m in a PN,),(0mN is said to be Coverable if ∃ a marking)(0mRm ∈′ such

that],1[)()(nipimpim ∈∀≥′ .
The concept of coverability is very closely related to the concept of potential firability or L1

liveness [2].
Suppose, m is the minimum marking needed to enable the transition t . Then t is dead (L0 live
and not L1 live) iff m is not coverable. This means, t is L1 live iff m is coverable.

The definition of coverability itself shows that one can give conclusive answer about coverability
as long as the PN is bounded i.e. it is a reachability tree. Following the same logic of reachability,
the coverability test from coverability tree is inconclusive.

5.2.1.5 Reversibility and Home State

A PN is said to be Reversible or Proper if the initial marking is reachable from all reachable
markings.

Mathematically, a PN is called Reversible or Proper if)(0mRm ∈∀ , 0m is reachable from m .

Equivalently, a PN is reversible if)(0mRm ∈∀ ,)(0 mRm ∈ .

Example 5.9)10(0 =Tm

)01(1 =Tm

)10(0 =Tm
 ‘Old’

In practical applications, it is often either not possible or not necessary to get back to the initial
marking as long as one can get back to some marking covered by the initial marking. This
particular marking (state) is called Home Marking or Home State. In this case also the PN is
reversible. Thus when checking reversibility of a PN, the above stated definition of reversibility
should not be followed blindly because the existence of home state was not taken into account in
the definition. Formally, a marking m′ is said to be a home marking or home state if,

)(0mRm ∈∀ , m′ is reachable from m .

A PN is reversible with respect to an initial marking 0m , iff every node in the coverability tree is

in a directed circuit containing 0m . A PN is called Partially Reversible if a directed circuit

containing 0m includes only some of the nodes. Hence, reversibility test from the reachability
(coverability) tree is conclusive.

p1

p2

 t1 t2

(a) (b)

Figure 5.6: (a) A reversible PN, (b) the reachability tree of (a) shows that the net is reversible

t2

 t1

 33

Example 5.10

)11000000(0 =Tm

)00100000(1 =Tm

)00110000(2 =Tm

)00011000(3 =Tm

)00010100(4 =Tm)00010010(5 =Tm

)00011000(3 =Tm)00011000(3 =Tm

 Figure 5.7: (a) AOCS PN graph, (b) Reachability tree shows initial marking 0m is never attained since Launch

 Phase or SNAP can never be reached again. But 3m becomes the home state and the PN (a) is reversible.

t1

p4

SPS

LP

Sun Acq

On-Orbit Normal

Snap

Safe Mode

Orbit
Maneuver

Imaging

t3

t2

t4

t5

t7

t6

t8
t9

p1

p2
p3 p5

p6

p7

p8

 t1

t2

t3

t4 t6

 t5 t7

(a)

(b)

Launch Phase (LP)

Sun Acquisition (Sun Acq) Mode

Sun Acq Mode
 Sun acquired

On Orbit normal (OO Normal)

Orbit Maneuver (OM) operation Imaging operation

‘Old’ ‘Old’

 34

5.2.1.6 Repetitivity

A PN is Repetitive with respect to an initial marking 0m iff the coverability graph has a directed
circuit (not necessarily elementary) containing all the transitions infinitely often. It is Partially
Repetitive if such a directed circuit contains only some of the transitions.

More formally, a PN,),(0mN is said to be (partially) repetitive with respect to an initial marking

0m if ∃ a firing sequence σ such that every (some) transition occurs infinitely often inσ .

Alternatively, a PN,),(0mN is said to be (partially) repetitive with respect to an initial marking

0m iff the coverability graph has a directed circuit (not necessarily elementary) containing all
(some) the transitions infinitely often [9].

It can be mentioned at this point that reversibility does not necessarily imply repetitivity and vice
versa. The definition itself clearly reveals that the repetitivity test from reachability (coverability)
tree is conclusive.

5.2.1.7 Persistence

A PN is said to be Persistent if, for any two enabled transitions, firing of one transition will not
disable the other. In other words, a PN is persistent if, for any)(0mRm ∈ , an enabled transition
can be disabled only by its own firing.

This means that, a transition in a persistent PN, once enabled, will remain enabled, until it fires.
This implies, a PN having conflicts can not be persistent since the same place is an input to more
than one transition. In a conflict situation an enabled transition can be disabled by the firing of
other transitions and hence can never represent persistence. In a nutshell, persistent nets are
always conflict-free nets.

The notion of persistence is important in the context of speed-independent asynchronous
circuits and parallel program schemata [2].

5.2.1.8 Consistency

A PN is Consistent with respect an initial marking 0m iff the coverability tree has a directed circuit
(not necessarily elementary) containing all the transitions at least once [9]. It is Partially
Consistent if such a directed circuit contains only some of the transitions.

The definition shows that consistency test from reachability (coverability) tree is conclusive.

5.2.1.9 Conservation

A PN is said to be Conservative with respect to an initial marking 0m , iff the weighted sum of the
tokens in every node of the reachability tree remains constant. A PN is called Strictly
Conservative if the sum of the tokens in the net always remains constant [9].

In simpler terms, a PN is conservative if it does not lose or gain tokens but merely moves them
around. Now one may ask why the definition of conservation is given in terms of weighted sum of
tokens rather than sum of tokens. The answer is that, in a PN two tokens can be encoded in one
token and that single token can produce two tokens via the firing of a transition. This is the reason
why a weighting vector is introduced to define the value of a token in each place; the weights are
always non-negative.

Example 5.11

 t1

Figure 5.8: Although place p1 contains a single token it has a potential to produce two tokens.
 Hence weight associated with place p1 must be 2.

p3

p1

p2

 35

Conservation can be effectively tested using reachability tree. Since reachability tree is finite,
the weighted sum can be computed for each marking. If this sum remains constant for all
reachable markings, the net is conservative with respect to the given weight.

Thus to find out whether a net is conservative or not, first one has to construct the reachability
tree with respect to a given initial marking 0m . Let w be a)1(×n column vector (single column, n
rows), called weight vector, where n is the number of places. The i th entry of w is given
by iw which is nothing but the weight associated with the place ip . If it happens that mwT =
constant, where m is the marking of any node in the reachability tree with respect to an initial
marking 0m , then one can conclude that the PN is conservative with respect to 0m . Since 0m itself

is a node in the reachability tree, instead of checking mwT =constant, one can check whether
mwT = 0mwT , this time m being marking of any node in the reachability tree except the top most

node 0m . More succinctly, conservation with respect to 0m demands mwT = 0mwT)(0mRm ∈∀ .
Note that nothing has been said so far about how to find w . The conclusion about conservation

depends a lot on one's ability to find such a)1(×n vector w , which satisfies the above stated
condition. Up to this point the only thing that is known about w is that it has non-negative entries.
But obtaining w by trial and error method seems an impossible proposition, particularly when n is
large. Is there any systematic procedure which can generate such a weight vector? The matrix
method based structural approach has an invariant analysis algorithm to determine this weight
vector. In behavioral approach, one can use the condition mwT = constant and thus generate a
set of k linear algebraic equations (k being the number of nodes in the reachability tree) in)1(+n

unknowns (nwww ,...,, 21 and the constant), subjected to the constraint 0≥iw ; ni ,...,2,1= . This
is a well-known linear programming problem having many algorithms for solution. So if a solution
exists, it can be computed. The solution obtained from these techniques, in general, will be
rational numbers. Multiplying them by a common denominator yields non-negative integral
solution. If no such weighting vector exists, which can be conclusively told from these techniques,
then the PN is not conservative.

One interesting situation comes when the net is unbounded i.e. the tree is coverability tree.
Then the basic problem is how to incorporate (omega). The answer is that, if a marking has
(omega) for a place pi, then the weight of that place must be zero for the PN to be conservative
[7].

Thus the conservation test from reachability (coverability) tree is conclusive.
However, one can make an intelligent guess about the entries of the weight vector by recalling

the fact that, the very need of introducing the weight vector is to indicate how many tokens are
encoded in a particular token. Looking at each place and keeping the initial marking in mind one
can make guess about how much weight should be assigned to a particular place. This can be
done easily by thinking the PN as an infinite capacity one (each place can accommodate infinite
number of tokens) and then mentally visualizing the number of tokens coming to each place. For
example in Fig. 5.8, weight associated with place p1 must be 2. The following example will further
illustrate this technique.

Example 5.12

In Fig. 5.9 PN graph of a Flexible Manufacturing Cell [9] is shown. The tokens in this context
represent resources (e.g. robots, conveyors etc.). One expects the PN of this system to be
conservative from the resource limitation point of view. One way to find the weight vector is to
construct the reachability tree and then for all the nodes of the tree form a set of linear algebraic
equations based on mwT = constant subjected to an inequality constraint 0≥iw ; ni ,...,2,1= .
Then one can use linear programming techniques to get weight vector, which turns out to
be T)111231231231(.

 36

Alternatively one can observe from Fig. 5.9 that the place p1 has got the potential of depositing
only one token to the output place p2 via transition t1. But two tokens can encoded in the place p2
as it is the output place of two places p1 and p10 via t1. Again, p3 has got three tokens encoded in
it as it can get two (as explained) encoded tokens from p2 and one encoded token from p11.
Hence one must assign weights 1, 2 and 3 to places p1, p2 and p3 respectively. Similarly one can
show that the weights associated with p4, p5 and p6 are 1, 2 and 3. Also those with p7, p8 and p9
are 1, 2 and 3. Similarly, weights associated with p10, p11 and p12 can be shown to be 1, 1 and 1.

5.2.1.10 Synchronic Distance

Synchronic Distance measures the degree of mutual dependence between two transitions in a
PN. This concept owes its origin to Carl Adam Petri.

Formally, Synchronic Distance)(12d between two transitions 1t and 2t in a PN,),(0mN is defined
as:

|)/(#)/(|#max 21)(12
0

σσ
σ

ttd
mL

−=
∈

where)/(# σjt denotes the number of occurrences of transition jt in the firing sequence

σ ; mj ,...,2,1= . In short, by saying
1j

d
2j K= , one means that

1j
t can not fire more

than K times, without firing
2jt once (for all possible firing sequences over)(0mR .

Example 5.13

In the PN shown in Fig. 5.10, 1,1 3412 == dd and ∞=13d .

p10

 t1

p1 p2

p3

p11 p12

p4 p5

p6

p7 p8

p9

 t4 t7

 t3 t6 t9

 t2 t5 t8
p10

Figure 5.9: PN for a Flexible Manufacturing Cell – the PN should be conservative

p1

p2

 t1 t2

p3

p4

 t4 t3

Figure 5.10: Example of Synchronic Distance

 37

5.2.1.11 Fairness

Many different notions of fairness have been proposed in the literature. Here two basic fairness
concepts are defined:

(1) Bounded Fairness (B- Fairness) and
(2) Unconditional (Global) Fairness.

Two transitions 1t and 2t are said to be in a Bounded-fair (B-Fair) relation if the maximum number
of times that either one can fire while the other is not firing is bounded.

A PN,),(0mN is said to be a B-Fair net if every pair of transitions in the PN are in a B-Fair
relation.

A firing sequence σ is said to be unconditionally (Globally) Fair if it is finite or every transition in
the net appears infinitely often inσ .

A PN,),(0mN is said to be an unconditionally (Globally) Fair net if every firing sequence σ

from)(0mRm ∈ is unconditionally fair.

Theorem: Every B-fair net is an unconditionally-fair net.

Theorem: Every bounded unconditionally fair net is a B-fair net.

Example 5.14

p1

p2

 t1 t2

p1

p2

 t1 t2

p3

p4

 t4 t3

p1

(a) (b)

(c)

Figure 5.11: (a) B-fair as well as unconditionally fair net, (b) unconditionally fair but not B-fair net, (c) neither B-fair nor unconditionally fair net

 38

Now one can make a comparative study of the behavioral properties whose conclusiveness can

be tested using reachability (RT) and coverability tree (CT).

Conclusiveness of test from Properties
Reachability Tree Coverability Tree

Reachability �
Boundedness

Liveness �
Coverability �
Reversibility
Repetitivity
Persistence
Consistency
Conservation

Synchronic Distance
Fairness

5.2.2 Structural approach

This approach deals with the structural properties of PN. Structural properties are independent of
the initial marking. Behavioral properties are dynamic in nature, whereas structural properties
deal with the static structure of the PN. Hence behavioral properties depend on markings and
token game simulation but structural properties depend on nodes and arcs only and not on
tokens and markings. In the following discussion, structural properties are treated in detail. Then
effort has been given to make conclusions about them from matrix based structural analysis.

I. Motivation for Structural analysis

In systems and control theory, system description is given in terms of a set of differential or
algebraic equations. Is it possible to give the Petri net system (static and dynamic) description in
terms of some equations? That was the spirit that enabled the development of matrix equations
for PN analysis. However, these matrix based method has limited power because of two reasons.
First reason is the intrinsic non-determinism present in PN models, the second reason is that,
unlike conventional control theory concepts, Petri nets pose one additional constraint that
solutions must be non-negative integers. These two, togetherly make matrix based analysis
somewhat weaker.

In all subsequent analysis, it will be assumed that the PN is pure (self-loop free) and if it is not
then it is made pure by adding a dummy transition and a dummy place, before applying any
matrix based method. This, of course, increases the matrix dimension.

II. Incidence Matrix

For a PN having n places and m transitions, the Incidence Matrix][ijaA = is a)(mn × matrix of
integers defined as:

−+ −= ijijij aaa

where +
ija = weight of the arc from transition j to its output place i

 −
ija = weight of the arc to transition j from its input place i

Table 5.1: Behavioral properties and their decidability using RT and/or CT

 39

It can be recalled that, i is index for place (general place is ip) and j is the index for transition

(general transition is jt). Also recall, ni ,...,2,1= and mj ,...,2,1= . Physically, +
ija , −

ija and ija ,
respectively, signify the number of tokens added, removed and changed in ith place due to firing
of jth transition.

Example 5.15

Consider the PN shown in Fig. 5.14 (a). Now by definition, =n no. of places = no. of rows = 2
and =m no. of transitions = no. of columns = 2. Hence dimension of the incidence matrix
A is)(mn × =)22(× . Now,

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

Since, −+ −= 111111 aaa = weight of the arc from 1t to its output place 1p - weight of the arc

to 1t from its input place 1p = 101 =− .

 −+ −= 121212 aaa = weight of the arc from 2t to its output place 1p - weight of the arc

to 2t from its input place 1p = 110 −=− .

 −+ −= 212121 aaa = weight of the arc from 1t to its output place 2p - weight of the arc

to 1t from its input place 2p = 110 −=− .

 −+ −= 222222 aaa = weight of the arc from 2t to its output place 2p - weight of the arc

to 2t from its input place 2p = 101 =− .

III. State Equation

A state equation, as it is understood in control theory, is an equation, which can predict the next
state (say)1(+k th state) of the system, having known the present state (say, k th state). It will be
a nice idea, if the same can be done in PN context.

Suppose a PN assumes a state (marking) 1+km resulting from another state (marking) km by the

k th firing (k th execution of the net), with 0≥k . Here 1+km is a)1(×n column vector where the i th

entry of 1+km denotes the number of tokens in place i immediately after the k th firing. The k th firing

is expressed as the k th firing vector or k th elementary firing vector or k th control vector ku , which

is an)1(×m column vector where the j th entry of ku denotes the number of times transition j fires

during the k th execution of the net. Since during a particular firing, a particular transition can
either not fire or fire only once, hence the elements of the vector ku can be either 0 or 1; 0 in the
position corresponding to the transition not fired and 1 corresponding to the transition fired during
k th firing. Note that, in general, one can not say that in)1(×n dimensional ku vector, there will be

only one non-zero entry 1 and rest)1(−n zeroes, because in concurrent firing (if present) there
will be multiple 1s and rest zeroes. Since the j th column of A denotes the change of marking as a
result of firing transition j , the PN State Equation is given by [6]:

 40

kkk Aumm +=+1 ; ,...2,1,0=k
(1)

Since numbers of tokens are non-negative integers, the role of the vector ku is to make the right

hand side of the state equation a)1(×n matrix of non-negative integers i.e. to make

0≥+ kk Aum ; ,...2,1,0=∀k
(2)

The above weak inequality can be used to test whether a given firing vector is legal or not, with
respect to some marking km . In a sense, ku controls the validity of the next state with respect to
present state. It is reminiscent of the control vector in the state equation in control theory. Hence
the name control vector.

Example 5.16

If Fig. 5.12 (a) corresponds 0m and (b) corresponds 1m .This is achieved by firing t2 only, is
represented in the following state equation.

001 Aumm +=

(a)

(b)

p1

p2 t1 t2 p3p4 t3

p2 t2 p4

p1

 t1 p3 t3

Figure 5.12: (a) A PN with initial marking, (b) that after firing t2

 41

 ⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
2

 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
0
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

+
0
1
0

111
101

010
111

IV. Reachability: Necessary Condition

For reachability, it is desirable to have a formula to test if a given marking fm (final marking) is

reachable from a given initial marking 0m . Suppose a particular firing given by the firing vector 0u

brings the system from 0m to 1m , 1u brings 1m to 2m , 2u brings 2m to 3m ... 1−fu brings 1−fm to fm .
Mathematically, these are achieved by repeatedly using the state equation:

001 Aumm +=

112 Aumm +=

223 Aumm +=

 11 −− += fff Aumm
 (3)

In short, final marking mf is reachable from initial marking 0m through a firing

sequence },...,,,{ 1210 −fuuuu . Summing all the above equations:

∑
−

=

+=
1

0
0

f

k
kf uAmm

 ⇒ σρAm =∆

(4)

Where m∆ = 0mm f − and ∑
−

=

=
1

0

f

k
kuσρ . Note that m∆ is a)1(×n column vector andσρ is the sum

of all the individual)1(×m firing vectors or control vectors. σρ is called Firing Count Vector
(already introduced in Art 5.2.1.1), which is a vector of non-negative integers where the j th entry
of σρdenotes the number of times transition j would fire in a firing sequence leading

from 0m to fm .
There should not be any confusion between Firing Vector (or Elementary Firing Vector or

Control Vector) and Firing Count Vector. Firing Count Vector is the sum of Firing Vectors. The
nomenclature is a potential source of misconception. Confusion may arise when using some
reference which does not introduce all the terms. The terms Firing vector, Elementary Firing
vector, Control vector - all are same. But Firing Count Vector is different. Firing vector is
associated with a single execution, which is an atomic event (hence the name Elementary Firing
Vector) but Firing Count Vector is associated with firing sequence (though as mentioned in Art
5.2.1.1, this association is not one-to-one) composed of multiple executions.

The significance of equation (4) is that, for a given PN (⇒ A is known), given an initial
marking 0m and a final marking fm , if it is asked that whether fm is reachable from 0m , then one

 42

can give an answer. Unfortunately, this answer is not conclusive. If equation (4) results a non-
negative integer solution forσρ , then the desired marking may or may not be reachable – the test
is inconclusive. But if no solution to equation (4) is found then the desired marking is not
reachable – the negation is conclusive. Hence, this is a necessary but not a sufficient condition
for reachability.

The inconclusive nature for reachability test that results form equation (4) may be due to the
following reason. State equation in general and equation (4) in particular, is an equation which
relates PN state (marking), which is a more dynamic property with incidence matrix, which is a
representation of static PN structure. The state or marking captures both the statics and
dynamics of the net whereas incidence matrix captures only the static net structure. Relating the
two using a single equation is like using logical AND operator which results the loss of information
about the dynamics of the net. That's exactly what has happened in equation (4), it has lost some
information about net dynamics. Hence, having a non-negative integral firing count vector as a
solution of equation (4) is an inconclusive answer.

V. Controllability

The beauty of Petri nets is that, one can extract essential control-theoretic ideas and adapt them
in the context of Petri nets, thus enabling the system engineer to make important conclusions
without providing lengthy mathematical manipulations. In control theory, and similarly in PN
theory, the term controllability refers to the ability of inputs to change the state of the system.
Thus a system is controllable means there exists a sequence of inputs which can steer the
system from one state to the other. More formally one can say, a problem domain is completely
controllable iff for every two state values in the state space of the problem representation, there
exists a finite sequence of inputs (that some planner could produce) which will move the states
from one value to the other (one state or marking to the other).

Equation (4) can also be written in the form of:

[]UAAAAm=∆

(5)
Where TT

f
TT

o uuuU]...[11 −= ; this vectorU is a column vector of dimension)1(×mf where the

column is composed of only 1s and zeroes. In equation (5), the matrix].......[AAAA is composed
of only A s and it is a row vector having single row and f A s. Since the dimension of
each A is)(mn × , the dimension of this matrix].......[AAAA is)(mfn × . Borrowing ideas from
system theory [Appendix B], the significance of equation (5) is that the matrix].......[AAAA is the
controllability matrix in PN context. It can be shown [Appendix B] that, for a PN system to be
completely controllable, the rank of the controllability matrix, and hence the rank of the incidence
matrix, must be equal to the number of places in the PN.

The above condition for controllability is necessary and sufficient for the existence of a solution
U of equation (5) over the field of rational numbers; but is necessary and not sufficient forU to be
a vector of zeroes and 1s. Thus, in PN context the above condition for controllability remains only
as a necessary condition.

If a problem domain is completely controllable, then for any state there exists a planner that can
achieve any specified goal state. Very often complete controllability is not a property of the
system, but it may possess a weaker form of controllability. This is the case in PN context too.
The condition that rank of the controllability matrix (and hence that of the incidence matrix) equals
number of places (in PN context) is as rarely satisfied as rank of the controllability matrix equals
the state space dimension (in Control theory context). Therefore, a PN, in general, is not
completely controllable just like in Control theory, systems are not completely controllable. This
brings forth the concept of weaker controllability.

 43

Moreover, both PN model and the actual plant are susceptible to disturbances. In PN context,
disturbances appear as modeling inaccuracies and parameter variations just like in plant domain
disturbances appear as noise in actuators, noise in physical system and noise in sensors.

Theorem: A necessary condition that a PN be completely controllable is rank of the incidence
matrix equals to number of places in the PN. (Proof: Appendix B)

VI. Invariants

A. Place Invariant

A Place-Invariant or P-Invariant (also called S-Invariant) is defined as a)1(×n non-negative
integer vector x which satisfies the equation:

0=AxT

(6)

Now it is required to explain the physical meaning of a P-invariant. For this let’s pre-multiply both
sides of the equation (4) by Tx :

σρAxmxmx TT
f

T += 0

 ⇒ 0mxmx T
f

T = (Since by definition, 0=AxT)

(7)

The expression in equation (7) is nothing but the conservation condition given in equation (1).
Both these equations are looking for a vector such that the vector transpose times final (desired)
marking equals the vector transpose times initial marking. This clearly reveals that the P-invariant
vector x is nothing but the weight vector w associated with places of the PN; hence the name
Place-invariant or P-invariant.

B. Transition Invariant

 A Transition-Invariant or T-Invariant is defined as a)1(×m non-negative integer vector y which
satisfies the equation:

0=Ay
(8)

Now it is required to explain the physical meaning of a T-invariant. For this let’s post-multiply both
sides of the equation (4) by y :

σρAyymym f += 0

 ⇒ 0mm f = (Since by definition, 0=Ay)

(9)

The expression in equation (9) gives a definition of T-invariant with physical meaning. A
vector y of non-negative integers is a T-invariant iff there exists a marking fmmm == 0 and a
firing sequence back to m whose firing count vector is y .

 44

C. Invariant Representation

P and T-invariants can be represented in two ways:

(1) Vector representation

P-invariant is represented as a)1(×n vector given by T

npippp xxxxx]......[
21

= .

T-invariant is represented as a)1(×m vector given by T
mtjttt yyyyy]......[21= .

(2) Set representation

P-invariant is represented as },...,{|||| 21 kpppx = where nk ≤ ; this set includes only those
places as elements of the set, which have non-zero weights.
T-invariant, in a similar fashion, can be represented as },...,{|||| 21 qttty = where mq ≤ ; this set
includes only those transitions as elements of the set, which have non-zero firing occurrences.

D. Minimal or Basic Invariant

A Minimal or Basic Invariant is one which is not a linear combination of other invariants.

More formally one can define minimal P and T invariants as follows. Let },...,{|||| 21 kpppx = be

the set representation of a P-invariant of a PN. Then |||| x is called a minimal P-invariant if ∃ a
|||| x′ such that |||||||| xx ⊂′ , where |||| x′ is another net invariant. Similarly one can define minimal

T-invariant. Since a linear combination of minimal T-invariants correspond a firing sequence
which takes a marking back to itself, Minimal T-invariants are also called Reproduction Vectors.

Having defined the minimal or basic invariants, now there are two major questions that remain
to answer. First, given a PN, how many basic invariants are possible and secondly, how to
determine them. Answer to the second question is relatively easy to perceive. Once the set of
solutions of equation (6) or equation (8) (depending on whether one is interested in minimal-P or
minimal-T invariants) is obtained, by factoring out the GCD (greatest common divisor) minimal or
basic invariants can be computed. However, the answer to the first question is not so obvious.

Theorem: A PN has)(rn − minimal P-invariants and)(rm − minimal T-invariants, where r is the
rank of the incidence matrix A .

Proof: Part (1) A PN has)(rm − minimal T-invariants.

T-invariants are defined to be solutions of equation (8): 0=Ay . Let A be partitioned as:

A =
⎭
⎬
⎫

⎩
⎨
⎧

2221

1211

AA
AA

Where, 11A is)(rmr −× , 12A is rr × , 21A is)()(rmrn −×− and 22A is rrn ×−)(. This

partition has been done by rearranging the columns of A such that 12A has r independent columns

of A , i.e. 12A is a non-singular square matrix of dimension)(rr × .
 Now equation (8) can be written as:

 45

0
0

222121

212111

=+
=+

yAyA
yAyA

(10)
 Where, 1y is of dimension 1)(×− rm and 2y is of dimension)1(×r . Since 12A is nonsingular and
hence invertible, the first equation of (10) can be written as:

111
1

122 yAAy −−=

(11)
Substituting (11) in the second equation of (10):

0)(111
1

122221 =− − yAAAA
 (12)

The co-efficient of 1y in equation (12) is nothing but the schur complement of 21A [Appendix A].
Now from equation (11) it is evident that, the solution of equation (8) and hence the system of
equations (10) is given by:

y =
⎭
⎬
⎫

⎩
⎨
⎧

11
1-

12 A A -
I

 (13)

Where, I is an)(rm − dimensional identity matrix. Clearly, =Ty])(,[1
1211

−− TT AAI = tB (say).

Generally the basic T-invariants are given in terms of tB , which actually is the transpose of basic

T-invariant. One can observe that tB has)(rm − rows. Hence the PN contains)(rm − basic T-
invariants.

Check:

T
tABAy = =

⎭
⎬
⎫

⎩
⎨
⎧

2221
1211

AA
AA

⎭
⎬
⎫

⎩
⎨
⎧

11
1-

12 A A -
I

 =
⎭
⎬
⎫

⎩
⎨
⎧ − −

1112
1-

2221

1112
1

1211

AAA - A
AAAA

=
⎭
⎬
⎫

⎩
⎨
⎧
0
0

(using equation

(12))

Hence the solution is verified. Note that A and tB are orthogonal to each other.

Part (2) A PN has)(rn − minimal P-invariants.

P-invariants are defined to be solutions of equation (6): 00 =⇒= xAAx TT . As it was done in
case of T-invariants, similar partitioning yields:

0

0

222121

212111

=+

=+

xAxA

xAyA
TT

TT

(14)
Since 12

TA is invertible,

222
1

12)(1 xAAx TT −−=
 (15)
Consequently,

0))((222
1

121121 =− − xAAAA TTTT

 46

 (16)

The co-efficient of 2x in equation (16) is nothing but the schur complement of 21
TA [Appendix A].

Now from equation (15) it is evident that, the solution of equation (6) and hence the system of
equations (14) is given by:

x =
⎭
⎬
⎫

⎩
⎨
⎧

I
A)(A - 22

T-1
12

T

 (17)

Where, I is an)(rn − dimensional identity matrix. Clearly,],[12
1

22 IAAxT −−= = pB (say).

Generally the basic P-invariants are given in terms of pB , which actually is the transpose of basic

P-invariant. One can observe that pB has)(rn − rows. Hence the PN contains)(rn − basic P-
invariants.

Check:
 T

p
TTT BAxAAx ==

 =
⎭
⎬
⎫

⎩
⎨
⎧

2212

2111

TT

TT

AA
AA

⎭
⎬
⎫

⎩
⎨
⎧

I
A)(A - 22

T-1
12

T

=
⎭
⎬
⎫

⎩
⎨
⎧ − −

0
)(2212

1
1121

TTTT AAAA
=

⎭
⎬
⎫

⎩
⎨
⎧
0
0

(Using equation (16)). Hence the solution is verified.

Note that, the state equation (equation (4)) is given by: mA ∆=σρ , which is an inhomogeneous
system of equations. It is a well-known fact in linear algebra that this inhomogeneous system has
a solution σρ iff m∆ is orthogonal to every solution x of the homogeneous system

00 =⇒= AxxA TT . Therefore, the existence of a solution for σρ demands
00 =∆⇒=∆ mBmx p

T .This gives an alternative statement (alternative to equation (4)) for
necessary condition of reachability.

E. Trivial invariant

An invariant vector with all its elements equal to zero (or the null set, in the set representation) is
called a trivial invariant.

F. Non-trivial invariant

An invariant is said to be non-trivial if at-least one element of the vector is non-zero (a non-empty
set).

G. Purely non-trivial invariant

An invariant in which all the elements of the vector are non-zero (in set representation, all the
places for a place invariant and all the transitions for a transition invariant are included in the set)
is said to be a purely non-trivial invariant [5].

H. Computation of Invariants

In the above section the fact that a PN has)(rn − minimal or basic P-invariants
and)(rm − minimal or basic T-invariants has been established. Now the question is how to
calculate the invariants. As per the definition of P and T-invariants, calculating invariants means

 47

solving equation (6) and (8). These two seemingly innocent equations are not so easy to solve
because of the constraint in the invariant definition that, the elements of solution vectors are non-
negative integers.

At first glance, readers may get the misconception that without going for solving the equation
(6) and (8) with constraint, why not directly partition A and get pB and tB in terms of partitioned

matrices. It should be clearly understood that partitioning A and calculating pB and tB , in general,
does not result in solution vector whose elements are non-negative integers. In fact, generally
such a practice yields pB and tB having negative and/or fractional elements. This is clearly

unacceptable. In a nutshell, calculating pB and tB may be used as a short-cut method to find
invariants. If someone is fortunate enough, then one may get an invariant having all non-negative
elements. Otherwise, in the general case, one has to use one of the following algorithms. The
objective of computation is to find the minimal set of invariants – those invariants which are
linearly independent.

Martinez-Silva Algorithm

Martinez and Silva [10] have given a Gauss elimination-like algorithm to calculate the invariants
of a PN. This section describes the algorithm for finding minimal set of P-invariants. How the
same can be used to find the minimal set of T-invariants will be mentioned subsequently. It may
be helpful to recollect the fact that a PN has)(rn − minimal P-invariants and)(rm − minimal T-
invariants.

Algorithm:

Recall that the basic equation for finding P-invariants is 0=AxT .

Step 1: Append an)(nn × identity matrix to A to generate]:[IA .
Step 2: Nullify the i th column of]:[IA by adding any two rows of]:[IA .
Step 3: Iterate for mj ,...,2,1= (stop when first m columns are nullified).
Step 4: Take out the un-nullified columns (starting at the)1(+m th column, leaving first m nullified

columns).
Step 5: Rank of this resultant matrix is)(rn − . Hence)(rn − linearly independent rows are

minimal P-invariants.

Note that, there is no guarantee that this algorithm will find only the minimal invariants. Hence

no one can guarantee that the resultant matrix has only)(rn − rows. Even if it has more
than)(rn − rows then by inspection one can find)(rn − linearly independent rows. This is
where, knowing apriori the fact that there will be)(rn − minimal P-invariants, help.

When it is desired to find minimal T-invariants then the basic equation to be solved
is 00 =⇒= TT AyAy . With this form, it is very much similar to the basic equation for P-
invariants except the incidence matrix is now got transposed. Thus one can now apply Martinez-
Silva algorithm as stated above. Only at Step 3, this time one has to iterate for ni ,...,2,1= (nullify
the i th column). Rest of the algorithm is similar to the above discussed P-invariant case.

Example 5.17

Consider the PN of example 5.15. The incidence matrix is ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

. Now it

is required to apply Martinez-Silva algorithm.

 48

Step 1:]:[IA ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1011
0111

.

Step 2 and
Step 3: []1100 .

Step 4: []11 .

Step 5: Rank of this resultant matrix is 1)12(=− . Hence only one linearly independent row is
minimal P-invariant.

Hence the minimal P-invariant is given by
⎭
⎬
⎫

⎩
⎨
⎧

=× 1
1

}{ 12x . Similarly one can find minimal T-

invariants.

Computation of suitable invariants that help in providing various properties of the PN, and

hence of the physical system are of particular interest. However, finding invariant is nothing but
solving a set of simultaneous equations under inequality constraint, which is a tedious job,
especially when the number of equations is quite large. Also in most practical situations, hardly
one can find a unique set of invariants. The identification of the desired set of invariants from all
possible ones is a complicated task [5]. The Martinez-Silva algorithm discussed above suffers
from the disadvantage that it considers the entire set of equations and hence the entire net to
compute the invariants. This may become a daunting task when the system is very complex and
the PN is of very large size with complex interactions. Moreover, Martinez-Silva algorithm obtains
minimal invariants. But minimal invariants may not be the desired invariants for proving properties
of the PN. Hence it is still a challenging task to compute what combination of minimal invariants
will give desired invariants. V. K. Agrawal [5] has proposed a simpler technique to find the desired
invariants. In this approach, the invariant is found as described below:

Step 1: Define a subnet called Restricted P-Subnet (RPSN) (as defined in Art 4.2.11).
Step 2: Select a RPSN such that the selected RPSN can have an invariant which is also an

invariant of the original PN.
Step 3: The selected RPSN is reduced to a smaller one using the proposed reduction rules [5]

and then the reduced subnet is analyzed.

However, the selection of the subnet is governed by the properties to be proved. Since the

subnet, in general, contains a subset of the entire set of places and transitions, the number of
nodes required to deal with is much smaller. Then it is much easier to find the invariant for this
subnet either by solving simultaneous equations under inequality constraint or by the algorithm
proposed in [5]. The proposed technique is also useful for finding the spanning set of invariants
for the entire net which covers all the places of the net. This report does not deal with the detailed
intricacies of this technique. The above discussion serves only as an overview of how an
alternate method can address the invariant computation problem. For a detailed discussion, one
can refer to [5].

I. Support of an Invariant

The Support of an invariant is a set of nodes (places or transitions depending on support of P-
invariant or support of T-invariant) whose corresponding component in the invariant is positive.

 49

The support of a P-invariant x is denoted by x which is a set of places whose corresponding
components in the vector x is positive. Similarly, the support of a T-invariant y is denoted

by y which is a set of transitions whose corresponding components in the vector y are positive.

J. Minimal Support

The support of an invariant is called minimal iff it does not contain the support of another invariant
but itself and the empty set [9].

Example 5.18

The minimal support for the P-invariant x in example 5.17 is given by: x },{ 21 pp= .

Theorem: Let 1z and 2z be two invariants of same kind (either both P-invariant or both T-invariant)
then:

(1) For non-negative integers a andb ,)(21 bzaz + is an invariant.

(2) If)(21 zz − has no non-negative elements, then it is an invariant.

(3) 2121 zzzz +=+ .

The first statement, in the context of T-invariants, means that the firing sequence corresponding

to a support resulting from a linear combination of minimal T-invariants (which by this theorem is
also a T-invariant) will result a marking reproducing itself (a firing sequence starting a marking
back to itself). Hence minimal T-invariants are also called Reproduction Vectors [9].

Theorem: Let a pure PN is bounded with respect to an initial marking 0m . Let the place ip belong

to the support of a P-invariant. Let jlll ,...,, 21 be the minimal supports containing ip and

let jxxx ,...,, 21 be the minimal P-invariants associated with the minimal supports. Then

for any reachable marking)(0mRm ∈ ,)(ipm is upper-bounded by:

))](/()[(min)(0,...,2,1 ill
T

jli pxxmpm =≤

The above statement is important from PN boundedness property point of view. This theorem

enables one to determine the k-boundedness of a PN from the P-invariants. It can be noted that if
a net is covered by P-invariants and m0 is bounded, then the net is bounded.

VII. Structural Properties

This section will describe the structural properties and how to determine them using incidence
matrix.
5.2.2.1 Structural Boundedness

A PN is said to be Structurally Bounded if it is bounded by any finite initial marking.

Thus structural boundedness is more general case compared to behavioral boundedness
which is defined with respect to a particular marking. Thus if one can show a PN is structurally
bounded, it implies the PN has behavioral boundedness.

Example 5.19

Figure 5.13: The PN shown above is structurally bounded

 50

Theorem: A PN is structurally bounded iff ∃ a)1(×n vector x of positive integers such

that 0≤AxT . (Proof can be found at [2])

A place p in a PN is said to be structurally unbounded if ∃ a marking 0m and a firing

sequenceσ from 0m such that unbounded.

Corollary: A place p in a PN is structurally unbounded iff ∃ an m -vector y of non-negative

integers such that 0>≠∆= mAy , where yx >≠ means yx ≥ and ii yx ≠ for some i .

5.2.2.2 Structural Liveness

A PN is Structurally Live if it is live for any initial marking 0m .

Example 5.20

5.2.2.3 Structural Conservation

A PN is Structurally Conservative if it is conservative for any initial marking 0m .

Theorem: A PN is structurally conservative (partially structurally conservative) iff ∃ a)1(×n

vector x of positive (non-negative) integers such that 0=AxT .

Example 5.21

Partial structural conservativeness condition demands the existence of a P-invariant. Hence a

partial structural conservative PN is also called a P-invariant net or S-invariant net. It can be
noted that structural conservativeness is a special case of structural boundedness.

5.2.2.4 Structural Repetitivity

A PN is Structurally (partially) Repetitive if it is repetitive for at least one finite initial marking.

Theorem: A PN is (partially) structurally repetitive iff ∃ a)1(×m vector y of positive (non-
negative) integers such that 0≥Ay and vice versa. (Proof can be found at [2])

Figure 5.14: The PN shown above is structurally live but the one in Fig. 5.13 is structurally not live

Figure 5.15: The PN shown in Fig. 5.14 (a) is structurally conservative.
 But the one shown above is partially structurally conservative but not structurally conservative

 51

Example 5.22

5.2.2.5 Structural Consistency

A PN is Structurally (partially) consistent if it is consistent for at least one finite initial marking.

Formally a PN is said to be structurally (partially) consistent if ∃ a finite initial marking 0m and a

firing sequenceσ from 0m back to 0m such that every (some) transition occurs at least once inσ .

Example 5.23

The net shown in Fig 5.14 is structurally consistent but the one shown above is structurally
partially consistent but not structurally consistent.

Theorem: A PN is (partially) structurally consistent iff ∃ a)1(×m vector y of positive (non-
negative) integers such that 0=Ay . (Proof can be found at [2])

Partially structurally consistent nets are also called T-invariant nets. It can be noted that
consistency is a special case of repetitiveness.

Theorem: If a PN is structurally bounded and structurally live then it is both structurally
conservative and structurally consistent.

5.2.2.6 Complete Controllability

A PN is said to be Completely Controllable if from any state (marking), any initial state (marking)
can be reached. Controllability is discussed in detail in Art 5.2.2 V.

Example 5.24

The net shown in Fig 5.14 is completely controllable.

5.2.2.7 Structural B-Fairness

Two transitions are said to be in a Structural B-Fair relation if they are in a B-fair relation for any
initial marking.

A PN is said to be structurally B-fair if it is a B-fair net for any initial marking.

Figure 5.16: The PN shown above is partially structurally repetitive but not structurally repetitive

Figure 5.17: The PN shown above is partially structurally consistent but not structurally consistent

 52

Example 5.25

Murata and Silva [11] have given the following results on structural B-fairness.

i. A structural B-fair relation (as well as a B-fair relation) on the set of transitionsT is an
equivalence relation and thus partitionsT into equivalence classes.

ii. Structural B-fairness implies B-fairness but the converse is not true [2].
iii. A structurally bounded net is structurally B-fair iff

Either it is consistent and there is only one reproduction vector (minimal non-negative T-
invariant 0≠y .
Or it is not consistent and there is no reproduction vector.

(b) (a)

Figure 5.16: (a) Structurally B-fair PN, (b) Not Structurally B-fair PN.

 53

Conclusion

This report described the basic Petri net theory in five chapters. Chapter 1 served as an
introduction. Chapter 2 introduces the basic nomenclature and representation symbols in the
context of Petri net and formally defines Petri nets and its various fundamentals. Chapter 3 is
dedicated exclusively for modeling. Chapter 4 defines various sub-structures of Petri net which
may ease the modeling and analysis of a complex net. Chapter 5 addresses the analysis aspect.
Various analysis approaches and corresponding mathematical formulations are given. However
for the sake of conciseness and less popularity among engineering fraternity, the reduction
method of analysis is not discussed in Chapter 5.

It should be emphatically mentioned that there are many other aspects of Petri net which has
not been addressed in this report. Two such important topics are subclasses of Petri net and
various extensions of Petri net.

A vast formalism like Petri net theory demands attention to many aspects. Survey report on
such a topic, henceforth, has to be either extensive or exhaustive. This report has been made
with more emphasis on the depth of the matter rather than attempting to cover all aspects of the
Petri net theory in a single run. This is the reason why the report has more vertical growth
compared to lateral growth. However, it can be mentioned that, this is only a preliminary survey
report made within the time limit of two months. The author hopes that the next tier report will be
able to address the subclasses, various extensions, simulation (tools and limitations) and
applications of Petri net. Once these basic concepts are addressed, then only one will be able to
address interesting questions like applicability of optimal control theory to Petri nets,
asynchronous decentralized control system modeling and analysis, hybrid system modeling,
simulation, analysis and performance evaluation etc. In this sense this report, though looks very
narrow-based at first glance, is rather open-ended.

A P P E N D I X

Algebra of Partitioned Matrices

A1. Definition of Partition Matrix or Block Matrix

A Partition Matrix or Block Matrix is a matrix whose elements are themselves matrices,
called blocks (not necessarily square blocks), such that in each row all the blocks have
same number of rows and in each column all the blocks have same number of columns.
Thus block matrix is a matrix of matrices. One can suitably partition a large dimensional
matrix into smaller blocks to obtain the partition matrix or block matrix.

Example

Let the matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

50544
05044
50544
33302
33320

X . It is a)55(× matrix. Let X be partitioned as :

⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

X .

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

505
050
505

44
44
44

333
333

02
20

D

C

B

A

Note that the blocks A and B have same no. of rows. Similarly blocks C and D have
same no. of rows.
Again blocks A and C have same no. of columns. Similarly blocks B and D have same
no. of columns.

A2. Partitioning a large dimensional matrix makes computation easier : An
 Illustrative Example

Often it is needed to compute the product of two large dimensional matrices. If we
directly multiply the two matrices then it is very time consuming and sometimes
impossible to calculate the product, since the memory space required to store such huge
matrices in computer, is very large. This problem can be circumvented by partitioning the
two matrices into smaller dimensional blocks. Then the product of two block matrices
can be stored as the multiplication of smaller dimensional blocks.

Let

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

npmqmqmq

np

np

aaa

aaa
aaa

A

 2 1

 22221

 11211

Λ
ΜΟΜΜ

Λ
Λ

be a)(npmq× matrix and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

srnpnpnp

sr

sr

bbb

bbb
bbb

B

 2 1

 22221

 11211

Λ
ΜΟΜΜ

Λ
Λ

be a)(srnp× matrix. We can partition the two matrices by

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qpqq

p

p

AAA

AAA
AAA

A

Λ
ΜΟΜΜ

Λ
Λ

21

 22221

 11211

and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

prpp

r

r

BBB

BBB
BBB

B

Λ
ΜΟΜΜ

Λ
Λ

21

 22221

 11211

,

where ijA are)(nm× matrices and jkB are)(sn× matrices,

.,,2,1 ,,,2,1 ;,,2,1 rkpjqi ΚΚΚ ===

Then,

srmq

qrqq

r

r

prpp

r

r

qpqq

p

p

C

CCC

CCC
CCC

BBB

BBB
BBB

AAA

AAA
AAA

AB

×=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

21

22221

11211

21

22221

11211

where

,,,2,1 ;,,2,1 , 2211
1

rjqiBABABABAC pjpijijikj

p

k
ikij ΚΚΛ ==+++==∑

=

are)(sm× matrices.
So instead of storing)(srmq× elements, now it is enough to store)(sm× elements. Thus
simple partitioning can significantly reduce memory space requirement.

A3. Definition of Block Diagonal Matrix

A Block Diagonal Matrix is a partition or block matrix whose off-diagonal blocks are
zero matrices and diagonal blocks are square matrices.

If D is a block matrix of the form
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

22

11

00
00
00

A
A

A
D where ijA are matrices, then

we write),,(332211 AAAdiagD = and call D as Block Diagonal Matrix.

Furthermore,
 ||.||.|||| 332211 AAAD = (a)

and if 0≠D , then
),,(33

1
22

1
11

11 −−−− = AAAdiagD (b)

A4. Definition of Jordan Block

A square matrix is called Jordan Block if

i. each element along the diagonal consists of a single number λ ,
ii. each element along the superdiagonal consists of 1,
iii. all other elements of the matrix are zero.

Thus a Jordan block of order q is a)(qq× matrix denoted as qJ given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

λ

λ
λ

λ

0...000
1...............
01...000
00...00
00...10
00...01

qJ

It can be noted that the degenerate case of)11(× matrix is considered as a Jordan block,
even though it lacks a superdiagonal to be filled with 1s [15].
Instead of taking 1s along the superdiagonal, sometimes they are taken along the
subdiagonal [16].

A5. Definition of Jordan Canonical Form

Jordan Canonical Form is a special kind of block diagonal matrix where each diagonal
block is a Jordan block with possibly differing constants iλ .
Thus a Jordan Canonical Form J may be given as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qn

q

q

q

J

J
J

J

J

0...000
0...............
00...000
00000
00000
00000

3

2

1

Example

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

3

4

0
0

21000000
12100000
01210000
0009.7000
00019.700
000019.70
0000019.7

J
J

i
i

i
J

A6. Usefulness of Jordan Canonical Form

Most of the linear algebra problems involving linear system of equations are easily
manageable if the coefficient matrix is diagonalizable. However, for a non-diagonalizable
matrix A , it is difficult to compute quantities like kA or Ae . Hence, finding the general
solution of the form AteCtx

ϖϖ =)(of a system of linear differential equations)()(txAtx ϖϖ
& =

may not be easy. Jordan Canonical Form provides a way to handle such non-
diagonalizable matrix A and hence to compute kA or Ae .

A7. Definition of Upper Block Triangular and Lower Block Triangular Matrix

If
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

00
0

A
AA
AAA

D where ijA are matrices, then D is Upper Block Triangular

matrix and (a) still holds. (c)
Lower Block Triangular matrices have the form of the transpose of (c).

A8. Schur Complement and Matrix Inversion Lemma

If A is a partitioned or block matrix of the form

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

AA
AA

A (d)

then we define Schur Complement of 22A as

 1211
1

212222 AAAAD −−= (e)
and the Schur Complement of 11A as

 2122
1

121111 AAAAD −−= (f)

The inverse of A can be written

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−+

= −−−

−−−−−−
−

22
1

11
1

2122
1

22
1

1211
1

11
1

2122
1

1211
1

11
1

1

DAAD
DAAAADAAAA (g)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−

= −−−−−−

−−−
−

22
1

1211
1

2122
1

22
1

11
1

2122
1

22
1

1211
1

11
1

1

AADAAADAA
AADDA (h)

 or
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= −−−

−−−
−

22
1

11
1

2122
1

22
1

1211
1

11
1

1

DDAA
DAADA (i)

depending, of course, on whether | 0|11 ≠A , | 0|22 ≠A , or both. These can be verified by

checking that IAAAA == −− 11 . By comparing these various forms, we obtain the well
known Matrix Inversion Lemma

 112122

1
121121121111

1
21221211

1)()(AAAAAAAAAAAAA −−− +−=+ (j)

The Schur Complement arises naturally in the solution of linear simultaneous equations,
for if

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ZY

X
AA
AA 0

2221

1211 (k)

then from the first equation
 YAAX 1211

1−−= (l)

and using (l) in the second equation yields
 ZYAAAA =− −)(1211

1
2122 (m)

If A is given by (d), then
 ||.||||.|||| 2122

1
1211121211

1
212211 AAAAAAAAAAA −− −=−= (n)

Hence the determinant of A is the product of the determinant of 11A (or 22A) and the
determinant of Schur Complement of 22A (or 11A).

A P P E N D I X

Controllability
Linear System Theory for Petri Nets

B1. Two Important Points

1. In the literature, a state is said to be controllable if there exists a sequence of
inputs which can transfer that state to zero state or nominal state. Again, a
state is said to be reachable if there exists a sequence of inputs which can
transfer zero state or nominal state to that state. Many books on system theory
do not make any distinction between these two definitions and controllability
is defined in both the ways dropping the term reachability. However, in PN
context, the term reachability has got a wide significance. Hence it is
imperative in PN context, to closely follow the classical definition of
controllability to avoid any confusion.

2. The terms ‘completely controllable’ and ‘controllable’ are often taken

synonymously in the literature. In PN context, as will be proved soon,
complete controllability condition is hardly satisfied but weak controllability
is not so rare.

B2. Condition of Controllability for a Linear System

To avoid mathematical complexity, we will consider linear time invariant (LTI) system.
This will serve as a representative case for deriving condition of controllability in linear
system theoretic framework. Once condition of controllability form LTI system is
established then we will make an attempt to make a parallel study of controllability in PN
context and in the process, we will end up with a corresponding condition of
controllability (i.e. complete controllability) in PN context.

For LTI systems, the n -dimensional linear state equation is given by

)()()(tuBtxAtx ϖϖ&ϖ += (a)
where

)(txϖ is)1(×n state vector,
)(tuϖ is)1(×p input vector,

A is)(nn×
B is)(pn×

Theorem: The n -dimensional linear time-invariant state equation is controllable iff any
of the following equivalent conditions are satisfied.

i. All rows of Be At− (and consequently of Be At) are linearly independent on
[0, ∞) over C, the field of complex numbers.

ii. The controllability grammian

 W ∫
∗∗=

t
AA deBBe

0

τττ is nonsingular for any 0>t .

Coefficient matrices.

iii. The)(npn× controllability matrix

 U]:...:::[12 BABAABA n− has rank n .

Proof: We will prove here that the controllability conditions, as listed above, are
equivalent. The first attempt is to prove that conditions (i) and (ii) are equivalent. Then
we will prove that (iii) is equivalent to condition (i) (and hence also to condition (ii)).

Proving Equivalence of Condition (i) and (ii)

Theorem: Let if

ϖ
 for ni ,...,2,1= be)1(p× complex-valued continuous functions defined

on],[21 tt . Let F be the)(pn× matrix with if
ϖ

 as its i th row. Define

),(21 ttW dttFtF
t

t

)()(
2

1

∗∫=

Then 1f
ϖ

, 2f
ϖ

, … , nf
ϖ

 are linearly independent on],[21 tt iff the)(nn× constant matrix

),(21 ttW is non-singular†.

Proof:
 Proof of necessity of the theorem

Let’s assume that if
ϖ

s are linearly independent on],[21 tt but),(21 ttW is singular.
Then ∃ a non-zero)1(n× row vector αϖ such that),(21 ttWαϖ = 0

ϖ
. This implies

0),(21 =∗αα ttW ⇒ =∗αα),(21 ttW 0))())(((
2

1

=∗∫ dttFtF
t

t

αα

(b)
Since the integrand ∗))())(((tFtF αα is a continuous function and is non-negative

],[21 ttt ∈∀ , equation (b) implies
0)(=tFα],[21 ttt ∈∀ .

This contradicts the linear independence assumption of the set if
ϖ

, ni ,...,2,1= . Hence if
the if

ϖ
s are linearly independent on],[21 tt , then),(.det 21 ttW 0≠ .

 Proof of sufficiency of the theorem
Suppose),(21 ttW is non-singular. But if

ϖ
s are linearly dependent on],[21 tt . Then by

definition, ∃ a non-zero constant)1(n× row vector αϖ such that)(tFαϖ = 0
ϖ

],[21 ttt ∈∀ .
Consequently we have

=),(21 ttWα 0)()(
2

1

=∗∫ dttFtF
t

t

α

† In fact, the matrix),(21 ttW , called the Grammian matrix is positive definite. The

determinant of),(21 ttW is called the Gram determinant of if
ϖ

s.

which contradicts the assumption that),(21 ttW is non-singular. Hence, if),(21 ttW
is non-singular, then the if

ϖ
s are linearly independent on],[21 tt . (Proved)

Now we note that Be At− (and consequently Be At) are real valued continuous functions,
a subset of complex valued continuous functions. Hence the above theorem, when
applied to Be At− (and consequently to Be At) directly proves the equivalence of
condition (i) and condition (ii).

Proving Equivalence of Condition (i) and (iii)

Theorem: Assume that for each i , if

ϖ
 is analytic on],[21 tt . Let F be the)(pn× matrix

with if
ϖ

 as its i th row and let)(kF be the k th derivative of F . Let 0t be any fixed point
in],[21 tt . Then the if

ϖ
s are linearly independent on],[21 tt iff

....]:)(:...:)(:)(:)([0
)1(

0
)2(

0
)1(

0 ntFtFtFtF n =−ρ

Proof:

Similar to the proof of previous theorem using method of contradiction.
Since the entries of Be At− are analytic functions, the above stated theorem implies that
the rows of Be At− are linearly independent on),0[∞ iff

nBAeBAeABeBe nAtnAtAtAt =−− −−−−−− ...]:)1(:...:::[)1()1(2ρ
),0[∞∈∀t .

Now let 0=t ; then this equation reduces to

nBABABAABB nnnn =−−− −− ...]:)1(:)1(:...:::[)1()1(2ρ

From Cayley-Hamilton theorem, we know that mA with nm ≥ can be written as a linear
combination of 1,...,, −nAAI . Hence the columns of BAm with nm ≥ are linearly

dependent on the columns of BAABB n)1(,...,, − . Consequently

])1(:...:::[...]:)1(:...:::[)1()1(2)1()1(2 BABAABBBABAABB nnnn −−−− −−=−− ρρ

Since changing the sign does not change linear independence, we conclude that the rows
of Be At− are linearly independent iff

 nBABAABB n =−]:...:::[)1(2ρ . (c)

The matrix]:...:::[)1(2 BABAABB n− is called the Controllability matrix of the
LTI system. This completes the proof of the equivalence of statements (i) and (iii).
(Proved)

B3. Condition of Controllability for a PN

The state equation of a PN, when compared with the state equation of LTI system,
reveals the fact that the identity matrix in PN state equation is analogous to the state
vector coefficient matrix A in LTI system and the incidence matrix in PN state equation
is analogous to the control vector coefficient matrix B in LTI system. Thus in equation
(c), replacing A by identity matrix and B by incidence matrix, we obtain that the

controllability matrix for PN becomes]:...:::[AAAA and the condition for
controllability becomes

nAAAA =]:...:::[ρ
 nA =⇒][ρ
Hence the controllability requirement in PN context is that the rank of the incidence
matrix must be equal to the no. of places in the PN.

References

[1] Leslie Lamport, “Time, clocks and the ordering of events in a distributed system”,

Communications of the ACM, Vol. 21, no. 7, July, 1978, pp. 558 – 565.

[2] Tadao Murata, “Petri nets: properties, analysis and applications”, Proc. IEEE, Vol. 77, no. 4,

April, 1989, pp. 541 – 580.

[3] Alessandro Giua and Frank DiCesare, “Petri net structural analysis for supervisory control”,

IEEE Trans. Robotics and Automation, Vol. 10, no. 2, April, 1994, pp. 185 – 195.

[4] James F. Watson, III and Alan A. Desrochers, “State-space size estimation of Petri nets: a

bottom-up perspective”, IEEE Trans. Robotics and Automation, Vol. 10, no. 4, August, 1994,
pp. 555 - 560.

[5] V. K. Agrawal, “Formal tools for specification driven protocol design of distributed computing

systems”, PhD Thesis, Dept. of Computer Science and Automation, Indian Institute of
Science, Bangalore, March, 1986.

[6] Tadao Murata, “State equation, controllability and maximal matchings of Petri nets”, IEEE

Trans. Automatic Control, Vol. AC-22, NO. 3, June, 1977, pp. 412 – 416.

[7] J. L. Peterson, Petri net theory and modeling of systems, Englewood Cliffs, NJ: Printice-Hall,

1981.

[8] L. Ferrarini, M. Narduzzi and M. Tassan-Solet, IEEE Trans. Robotics and Automation, Vol. 10,

no. 2, April, 1994, pp. 169 – 184.

[9] Alan A. Desrochers and Robert Al-Jaar, Applications of Petri nets in manufacturing systems:

modeling, control and performance analysis, IEEE Press, Piscataway, NJ: 1994.

[10] J. Martinez and M. Silva, “A simple and fast algorithm to obtain all invariants of a generalized

Petri net”, 2nd European Workshop on the Application and Theory of Petri nets, Bad Honnef
(FRG), September, 1981, pp. 411 – 422.

[11] M. Silva and T. Murata, “B-fairness and structural B-fairness in Petri net models of concurrent

systems”, Technical Report no. UIC-EECS-86-10, University of Illinois at Chicago, June,
1986.

[12] David E. Johnson and Johnny R. Johnson, Graph theory with engineering applications, The

Ronald Press Company, New York, 1972.

[13] G. Memmi and G. Roucairol, “Linear algebra in net theory”, Lecture notes in computer

science (LNCS), Vol. 84, no. 15, 1980, pp. 213 – 223.

[14] Javier Campos, Giovanni Chiola and Manuel Silva, “Ergodicity and throughput bounds of
Petri nets with unique consistent firing count vector”, IEEE Trans. Software Engineering, Vol.
17, no. 2, February, 1991, pp. 117 – 125.

[15] G. Strang, Linear Algebra and Its Applications, 3rd Edition, Philadelphia, PA : Saunders,

1988.

[16] V. N. Faddeeva, Computational Methods of Linear Algebra, New York : Dover, 1958.

[17] C. T. Chen, Linear Systems Theory and Design, 3rd Edition, Oxford University Press, 1998.

