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COVID-19

203M cases

4.3M deaths



Image Credit: www.worldometers.info 

Worldwide total cases
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California new reported cases



Challenges in COVID-19 risk analytics

Counties need to account time-varying traffic data

When to impose NPI measures? For how long?

Where are the infections spreading from? And spreading to?



This study

Proposes new risk analytics method from county-level traffic graph

Uses graph curvature to quantify the likelihood of spread

Demonstrates the proposed method on real county-level traffic data 
for California during March 1st,  2020-March 31st, 2021 



County-level traffic graph

time-varying weighted directed graphs 𝒢 = 𝒱, ℰ,𝑤 from inter-county 
traffic data

𝑤 AB = weekly average traffic count from county A to county B

From county To county 𝑤

A B 50

A C 5

B A 0

B C 2

C A 0

C B 60

C

A

B2

60

5

50



County-level traffic graph Graph Ricci and scalar curvatures 

Vertex to vertex interaction Neighborhood to neighborhood 
interaction

Pairwise information only when an 
edge exists between the vertices

Pairwise information over all 
possible pathways in the network

Why graph curvature



Measures the deviation of the manifold from being locally flat (here, 
flat = Euclidean)

Quantifies that deviation in the tangent directions

Controls the average dispersion of geodesics around those directions

Ricci curvature 𝜅 on Riemannian manifold



Curvature and geodesic dispersion



Ricci curvature 𝜅 on Riemannian manifold

“inter-ball” geodesics

𝜅 > < 0 ≡ small balls are closer (further) than their centers

av. inter-ball distance = 𝑑 𝑥, 𝑦 1 −
𝜀2

2 𝑛+2
𝜅 𝑣 + 𝑂(𝜀3 + 𝜀2𝑑(𝑥, 𝑦))

ℬ𝜀(𝑥) ℬ𝜀(𝑦)



Ricci curvature 𝜅 on metric measure space 

𝜅 𝑥, 𝑦 = 1 −
𝑊1(𝑚𝑥, 𝑚𝑦 )

𝑑(𝑥, 𝑦)

Average distance between balls centered at 𝑥 and 𝑦

1-Wasserstein distance 𝑊1

Distance between the centers 𝑥 and 𝑦

Minimal geodesic distance 𝑑

𝜅 > < 0 ≡ small balls are closer (further) than their centers



1-Wasserstein distance 𝑊1

minimum amount of work to reshape one distribution into other



Linear programming (LP) formulation:

argmin
𝝅

෍

𝑥∈𝑚𝑥, 𝑦∈ 𝑚𝑦

𝑑 𝑥, 𝑦 𝝅(𝑥, 𝑦)

𝝅 𝑥, 𝑦 ≥ 0

෍

𝑦∈𝑚𝑦

𝝅(𝑥, 𝑦) = 𝑚𝑥

෍

𝑥∈𝑚𝑥

𝝅(𝑥, 𝑦) = 𝑚𝑦

𝑊1(𝑚𝑥 , 𝑚𝑦 ) in metric measure space

optimal transportation plan



Generalize 𝜅 to weighted directed graph

𝜅 𝑥, 𝑦 = 1 −
𝑊1(𝑚𝑥, 𝑚𝑦 )

𝑑(𝑥, 𝑦)
𝜅 𝑣𝑖, 𝑣𝑗 = 1 −

𝑊𝑖𝑗

𝑑Hop 𝑣𝑖 , 𝑣𝑗

For a weighted directed graph 𝒢 = 𝒱, ℰ, 𝑤

directed edge ← tangent direction 
𝑊𝑖𝑗 ← distance between balls centered at 𝑣𝑖 and 𝑣𝑗
𝑑Hop ← distance between the “centers” 𝑣𝑖 and 𝑣𝑗



Vertex reachability

A path from 𝑣1 ∈ 𝒱 to 𝑣2 ∈ 𝒱 is a sequence 𝑠 of directed edges

𝒮 is the set of all paths

𝑙𝑠 𝑣1, 𝑣2 is the length (hop count) of the path from 𝑣1 ∈ 𝒱 to 𝑣2 ∈ 𝒱 via 𝑠

𝑣2 is reachable from 𝑣1 (denote 𝑣1 → 𝑣2) if ∃ a directed path from 𝑣1 to 𝑣2



Hop distance 𝑑Hop

𝑑 𝑥, 𝑦 𝑑Hop 𝑣𝑖, 𝑣𝑗

𝑑Hop 𝑣1, 𝑣2 ≔

min 𝑙𝑠 𝑣1, 𝑣2
𝑠 ∈ 𝒮

if 𝑣1 → 𝑣2,

0 if 𝑣1 = 𝑣2,

∞ if 𝑣1 ↛ 𝑣2,

Geodesic distance between 
the centers 𝑥 and 𝑦

Hop distance between
the vertices 𝑣𝑖 and 𝑣𝑗



Single hop out-neighborhood measure balls 

𝑊1(𝑚𝑥, 𝑚𝑦 ) 𝑊𝑖𝑗

𝑚𝑥 = {𝜇𝑥 𝑥1 , 𝜇𝑥 𝑥2 , … , 𝜇𝑥 𝑥𝑘 } 𝜇𝑥 𝑥𝑖 ≔

𝑤(𝑥𝑥𝑖)

σ𝑗=1
𝑘 𝑤(𝑥𝑥𝑗)

if 𝑥𝑖 ∈ 𝒩(𝑥),

0 otherwise.

single hop out-neighborhood of 𝑥

1-Wasserstein distance between 
the measure balls 𝑚𝑥 and 𝑚𝑦

centered at 𝑥 and 𝑦

1-Wasserstein distance between 
the single hop out-neighborhood 
measure balls centered at vertices 
𝑣𝑖 and 𝑣𝑗

Single hop out-neighborhood measure balls: 



Single hop out-neighborhood measure balls 

𝑥 𝑦

𝑥2𝑥1 𝑦1

𝑥4 𝑦3

𝑦2

𝑥3

𝑥5

𝑑Hop 𝑥2, 𝑦1 = 1, 𝑑Hop 𝑥1, 𝑦3 = 5



1-Wasserstein distance between single hop 
out-neighborhood measure balls 

𝑊𝑖𝑗 ≔

0 if 𝑖 = 𝑗,

𝑊1(𝑚𝑣𝑖
,𝑚𝑣𝑗

) otherwise

undefined if 𝑖 ≠ 𝑗 ⋀ 𝑣𝑖 ↛ 𝑣j ⋁ 𝒩 𝑣𝑖 = ∅ ⋁ 𝒩 𝑣𝑗 = ∅ ,

𝑊1(𝑚𝑥, 𝑚𝑦 ) 𝑊𝑖𝑗

1-Wasserstein distance between 
the measure balls 𝑚𝑥 and 𝑚𝑦

centered at 𝑥 and 𝑦

1-Wasserstein distance between 
the single hop out-neighborhood 
measure balls centered at vertices 
𝑣𝑖 and 𝑣𝑗



argmin ⟨𝒅Hop, 𝝅⟩

𝝅

𝝅 ≥ 0 (elementwise)

𝟏|𝑚𝑣𝑖|
⊤ 𝝅 =𝑚𝑣𝑗

𝟏|𝑚𝑣𝑗|
⊤ 𝝅 =𝑚𝑣𝑖

LP for computing 𝑊1(𝑚𝑣𝑖 , 𝑚𝑣𝑗)

can be solved as network flow problem 

in ෨𝑂 𝑚𝑣𝑖 × 𝑚𝑣𝑗 𝑚𝑣𝑖 + 𝑚𝑣𝑗 time



Simulation setup

Inter-county daily traffic data for California during March 1st,  
2020-March 31st, 2021 

Source: SafeGraph dataset “Social Distancing Metrics”

URL: https://www.safegraph.com

Anonymous commute data based on cellular pings and social 
network usage

https://www.safegraph.com/


Simulation setup

Constructed county level traffic graphs 𝒢 𝒱, ℰ, 𝑤 and 
corresponding weighted adjacency matrices

Computed outward and inward Ricci curvatures



Outward Ricci curvature: Los Angeles county





Outward Ricci curvature: Santa Clara county



Inward Ricci curvature: Butte county





Inward Ricci curvature: Ventura county



Scalar curvature

Weighted average of Ricci curvature

Defined on vertices:

𝑠 𝑣𝑖 ≔ ෍

𝑗∈𝒩𝑣𝑖

𝜅(𝑣𝑖 , 𝑣𝑗)𝜇𝑣𝑖 𝑣𝑗 ,



A.    High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up.

B.     Low Scalar Curvature, harder for 
COVID-19 to spread, and the number of 
new cases has a negative acceleration. Cases 
vs Week graph concave down.

C.     High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up again.

D.     COVID-19 vaccine comes out, number 
of new cases drops significantly as more 
people were vaccinated.

A B DC



A.    Low Scalar Curvature, harder for COVID-19 
to spread, and the number of new cases has a 
negative acceleration. Cases vs Week graph 
concave down.

B.     High Scalar Curvature, easier for COVID-19 
to spread, and the number of new cases has a 
positive acceleration. Cases vs Week graph 
concave up again.

C.    Low Scalar Curvature, harder for COVID-19 
to spread, and the number of new cases has a 
negative acceleration. Cases vs Week graph 
concave down.

D.    High Scalar Curvature, easier for COVID-19 
to spread, and the number of new cases has a 
positive acceleration. Cases vs Week graph 
concave up again.

E.    COVID-19 vaccine comes out, number of 
new cases drops significantly as more people 
were vaccinated.

A B DC E



A B DC

A.    High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up.

B.     Low Scalar Curvature, harder for 
COVID-19 to spread, and the number of 
new cases has a negative acceleration. Cases 
vs Week graph concave down.

C.     High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up again.

D.     COVID-19 vaccine comes out, number 
of new cases drops significantly as more 
people were vaccinated.



A B DC

A.    High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up.

B.     Low Scalar Curvature, harder for 
COVID-19 to spread, and the number of 
new cases has a negative acceleration. Cases 
vs Week graph concave down.

C.     High Scalar Curvature, easier for 
COVID-19 to spread, and the number of 
new cases has a positive acceleration. Cases 
vs Week graph concave up again.

D.     COVID-19 vaccine comes out, number 
of new cases drops significantly as more 
people were vaccinated.



Conclusion

Network Ricci curvature does not “average out” the pairwise 
interaction information

Reveals which interactions in the network are robust and which 
interactions are fragile

Scalar curvature is approx. predictor of case counts

Graph curvature analytics can help county officials to plan NPIs



Future research

Generalize curvatures to directed simplicial complexes to capture 
more than two-way interactions

Design control mechanisms to optimally (e.g., minimum effort) steer 
the spatial distribution of the graph Ricci curvatures over time



Thank you


