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A theory for operation of the load serving entity (LSE) to enable demand response by controlling the aggregate power consumption for a population of

thermostatically controlled loads (TCLs)

Research Challenges

such as residential air conditioners.

1. How to design the reference total power trajectory as a function of the forecasted price of energy?

2. The room temperature, setpoint, and ON/OFF binary state of any individual TCL cannot be measured for privacy reasons.

3. The LSE may have different contractual obligations for different TCLs in terms of their comfort ranges.

| Key Question: What is the optimal plan for the LSE to schedule the purchase of power? Also, how to control the TCLs in |
real-time to track the reference total power, while respecting privacy and comfort range constraints?

' Idea: Adjust setpoints to meet the optimized target consumption.

Proposed Architecture: A Two Layer Approach
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Fig. 1. Architecture of the proposed demand response system.

Formulation
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First layer: optimal planning
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Fig. 2. Block diagram for the two layer control framework. Fig. 3. Setpoint control with comfort range constraint to track optimal reference power trajectory.
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Second layer: setpoint control
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Numerical Results
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Fig. 4. 100 initial conditions (so. ) ~N<[20,20]T, {0%5 055}) where red denotes ON, and blue denotes OFF TCL. Fig. 5. Price and ambient temperature forecast Fig. 6. PID controller tracks the total power consumption to the
Four columns correspond to four different contract distributions (inset histogram).Aumu = 0.1°C, Ay = 1.1°C.  for Houston on May 20, 2015, 4--6 pm. optimal reference consumption, with (bottom row) and without

(top row) comfort constraints. Four columns are for four contract
distributions, as in Fig. 4.

Theoretical Analysis for the Planning Problem

Why: Direct “discretize-then-optimize” approach leads to large scale mixed integer linear program (MILP), numerically difficult to solve.

How: Use Pontryagin’s Maximum Principle (PMP) for the continuous time optimal control problem.

Optimality results from analysis:
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e Constraints (1) and (2) active: ujy(t) = 1 (r(t)<n*} where 7% £ inf (7? : /0 1ir(t)<7) dt = %) = optimal actions are synchronized.

e Constraints (1), (2), and (3) active: 0°0 (1) = 0 o o (677 (1)), where U7 17 (-) is the two-sided or double Skorokhod map in L, U].
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Fig. 7. Price forecast Fig. 8. Increasing rearrangement of Fig. 9. Optimal control (top) and optimal temeprature (state)
price forecast trajectories (bottom)
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e Tracks the designed target consumption in real-time.
e LSE does not need to know individual states = preserves privacy.
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