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In this paper, a dynamical systems analysis is presented for characterizing the motion of a
group of unicycles in leader–follower formation. The equilibrium formations are character-
ized along with their local stability analysis. It is demonstrated that with the variation in
control gain, the collective dynamics might undergo Andronov–Hopf and Fold–Hopf bifur-
cations. The vigor of quasi-periodicity in the regime of Andronov–Hopf bifurcation and het-
eroclinic bursts between quasi-periodic and chaotic behavior in the regime of Fold–Hopf
bifurcation increases with the number of unicycles. Numerical simulations also suggest
the occurrence of global bifurcations involving the destruction of heteroclinic orbit.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Equilibrium formations for nonholonomic systems have been an active area of research in recent times among many
disciplines like biological sciences [1–3], computer graphics [4] and systems engineering [5–8]. One particular problem
studied in this context has been the consensus seeking [9] or the state agreement problem [10] which deals with designing
feedback controllers to make multiple agents converge to a common configuration in the global coordinates. A special
case to this is the rendezvous problem [11,12] where the agents converge at a single location.

In addition to the stability and control aspects, considerable efforts have also been put in effective modeling of the non-
holonomic systems to make the analysis tractable. Starting from the n-bug problem in mathematics [13], the self-propelled
planar particles were later [14,15] replaced by wheeled mobile agents with single nonholonomic constraint, i.e. unicycles. Lie
group formulation [16] and oscillator models [17] have been attempted for dynamic modeling of such agents. In particular,
Klein and Morgansen [18] extended the oscillator model to account for the intermediate centroid velocity of the unicycles to
make trajectory tracking possible.

Several researchers [14,15,19–21] proposed laws for designing control strategies of such nonholonomic vehicles. One
possible approach to design the control law is to use a centralized cooperative control scheme for the entire agent col-
lective. However, such a control law is susceptible to bandwidth limitation as well as external disturbances and hence
not scalable for a team having large number of mobile agents. As a result, distributed control laws have been investi-
gated by the researchers for this problem, where the feedback is constructed through local interactions of the vehicles
leading to a global formation convergence. In particular, Yang et al. [22,23] proposed a decentralized framework where a
distributed controller accounts for local control decision based on the interaction of each agent with its neighbors.
. All rights reserved.
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Moreover, their algorithm was also capable of estimating the global statistics of the swarm (for example, overall swarm
shape), thereby enabling simultaneous estimation and control. A special research topic has been to design the distrib-
uted controller with asynchronous communication constraints. For a detailed account on this topic, the reader may refer
[24–27].

The present paper is part of a research endeavor which aims to address the nonholonomic multi-agent dynamics and dis-
tributed control problem. The authors earlier studied [28] the cyclic pursuit of 2-unicycle problem with a controller similar
to [14] in modified form. These preliminary results showed that the system may exhibit very different dynamics depending
on the choice of controller gains. As a next step, in this paper, the authors study nonlinear dynamics of multiple nonholo-
nomic unicycles in leader–follower configuration to characterize regimes of linear stability. Nonlinear analysis is also per-
formed, which throws light in many nontrivial areas of the complex dynamics of the agents leading to greater
understanding of the overall system.

The differences in the recent research directions in multi-agent systems has generally varied with the variety of control
strategies and the types of consensus demanded. To the best of the authors’ knowledge, very few attempts (like [29]) have
been made to understand the system from the standpoint of nonlinear dynamics. The authors must underline the fact that a
successful analysis to even slightly simpler systems like leader–follower configuration, can guide us in better designing of
controllers.

As mentioned above, the choice of leader–follower configuration was partly due to its slightly simpler dynamics and
partly due to the fact that many biological systems (like birds) also exhibit this configuration. This choice, in the biological
world was long believed to be for energy efficiency [30]. Some recent results [31] tell that leader–follower configuration may
also enhance communication and orientation of the flock. It is a topic of research whether this form may have any superiority
in inter-agent communication and performance for the bio-mimetic collectives.

The rest of this paper is organized as follows. Section 2 describes the mathematical model of the leader–follower forma-
tion and transforms the equations of motion from global to relative coordinates. Section 3 provides the derivation of fixed
points followed by corresponding equilibrium formations. Section 4 presents the stability boundary based on local stability
analysis and associated Hurwitz stability criteria. Section 5 presents the existence of Andronov–Hopf bifurcation depending
on the value of scaled control gain followed by numerical simulation results presented in Section 6. Section 7 concludes the
paper.
2. Mathematical model

The focus of this paper is to investigate the dynamics of an n-unicycle system with kinematic equations given by
_xjðtÞ
_yjðtÞ
_hjðtÞ

0
B@

1
CA ¼

cos hjðtÞ 0
sin hjðtÞ 0

0 1

0
B@

1
CA tj

xj

� �
; j ¼ 0;1; . . . ; n� 1; ð1Þ
where the position and orientation of the jth vehicle are denoted by xj; yj 2 R and hj 2 ½�p;pÞ, respectively. tj and xj are the
control inputs (linear velocity and angular velocity). The vehicle with index 0 will be referred to as the leader, and the others
as followers. Our focus here is to analyze the leader–follower formation, when the trajectory of the leader is a straight line or
a circle. These trajectories for the leader are obtained by the simple control law
t0 ¼ V ;

x0 ¼ x:
ð2Þ
The case x ¼ 0 represents straight line motion, while x–0 corresponds to circular motion.
The configuration of the n-unicycle system is shown in Fig. 1, where ri is the relative distance between the two vehicles, ai

is the angle between the current orientation of the ith unicycle and the line of sight, and bi is the angle between the current
orientation of iþ 1th unicycle and the line of sight. Both angles are positive in the sense of counterclockwise rotation to the
line of sight. Following [14], the kinematic equations are written in relative coordinates:
Fig. 1. Relative coordinates with vehicle iþ 1 pursuing vehicle i.
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_r0 ¼ �t0 cos a0 � t1 cos b0;

_a0 ¼ 1
r0
ðt0 sina0 þ t1 sin b0Þ �x0;

_b0 ¼ 1
r0
ðt0 sina0 þ t1 sin b0Þ �x1;

8>><
>>:

_ri ¼ �ti cos ai � tiþ1 cos bi;

_ai ¼ 1
ri
ðti sinai þ tiþ1 sin biÞ �xi;

_bi ¼ 1
ri
ðti sinai þ tiþ1 sin biÞ �xiþ1;

8>><
>>:

ð3Þ
where i ¼ 1; . . . ; n� 2, ri 2 Rþ and ðai; biÞ 2S1 �S1. The pursuit control law for the ith follower is chosen as
ti ¼ ri�1;

xi ¼ k sin bi�1;
ð4Þ
where the gain k is positive. The choice of this control law is inspired by the goal to align the follower’s instantaneous
velocity vector with its line of sight.

Substituting the control laws (2) and (4) into the relative dynamics (3) yields n� 1 sets of three dimensional ODEs:
_r0 ¼ �V cos a0 � r0 cos b0;

_a0 ¼ 1
r0
ðV sin a0 þ r0 sin b0Þ �x;

_b0 ¼ 1
r0
ðV sin a0 þ r0 sin b0Þ � k sin b0;

8>><
>>:

_ri ¼ �ri�1 cos ai � ri cos bi;

_ai ¼ 1
ri
ðri�1 sin ai þ ri sin biÞ � k sin bi�1;

_bi ¼ 1
ri
ðri�1 sin ai þ ri sin biÞ � k sin bi;

8>><
>>:

ð5Þ
The parameters of this system are V, x and k and are restricted to be positive without loss of generality.
3. Characterization of equilibria

3.1. Derivation of the fixed points

Setting the right-hand side of (5) to zero results 3n� 3 transcendental equations for the fixed points of the system
V
r�0

cos a�0 ¼ � cos b�0; ð6Þ

V
r�0

sin a�0 ¼ � sin b�0 þx; ð7Þ

V
r�0

sin a�0 ¼ ðk� 1Þ sin b�0; ð8Þ

r�i�1

r�i
cos a�i ¼ � cos b�i ; ð9Þ

r�i�1

r�i
sina�i ¼ � sin b�i þ k sin b�i�1; ð10Þ

r�i�1

r�i
sina�i ¼ ðk� 1Þ sin b�i : ð11Þ
Subtracting (7) from (8) and (10) from (11) yields
sin b�0 ¼ sin b�1 ¼ � � � ¼ sin b�n�2 ¼
x
k
: ð12Þ
Fixed point(s) exist when j sin b�j 6 1, i.e. k P x. When k ¼ x, fixed points coalesce in a saddle-node bifurcation.
Squaring and adding (6) and (7), (9) and (10) yields
V
r�0

� �2

¼ r�i�1

r�i

� �2

¼ 1þx2 � 2x2

k
;

which results the equilibrium relative distance as
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r�0 ¼
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þx2 � 2x2

k

q ; r�i ¼
V

ð1þx2 � 2x2

k Þ
iþ1

2

; 1þx2 � 2x2

k
> 0; i ¼ 1;2; . . . ;n� 2: ð13Þ
Further, substituting (12) and (13) into (7) and (10) yields
sina�0 ¼ sin a�1 ¼ � � � ¼ sin a�n�2 ¼
x� x

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2 � 2x2

k

q : ð14Þ
From (6) and (9), it can be noted that cosa�i and cos b�i must have different signs.
When k > x, every a�i can assume two distinct values in ½0;2p� and thus there are 2n�1 possible fixed points of system (5).

However, 2n�1 � 2 of these fixed points are spurious, as the geometric constraint of the equilibrium formation demands all
unicycles to perform unidirectional translation in case of straight line formation and unidirectional rotation in case of cyclic
formation. This constraint makes only the following two fixed points (A and B) possible:
A

r�0 ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2�2x2

k

p ; r�i ¼ V

ð1þx2�2x2
k Þ

iþ1
2
;

a�0 ¼ a�1 ¼ � � � ¼ a�n�2 ¼ p� arcsin x k�1

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2�2x2

k

p ;

b�0 ¼ b�1 ¼ � � � ¼ b�n�2 ¼ arcsin x
k ;

8>>><
>>>:

B

r�0 ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2�2x2

k

p ; r�i ¼ V

ð1þx2�2x2
k Þ

iþ1
2
;

a�0 ¼ a�1 ¼ � � � ¼ a�n�2 ¼ arcsin x k�1

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2�2x2

k

p ;

b�0 ¼ b�1 ¼ � � � ¼ b�n�2 ¼ p� arcsin x
k :

8>>><
>>>:
When k ¼ x, the two fixed points A and B coalesce in a saddle-node bifurcation.

3.2. Equilibrium formations

Fixed points A and B correspond to equilibrium formations of the leader–follower system in global coordinates ðx; y; hÞ.
The goal of this section is to characterize these formations. When x ¼ 0, the trajectory of the leader can be expressed explic-
itly as
x0ðtÞ ¼ ðV cos h0Þt þ x0ð0Þ;
y0ðtÞ ¼ ðV sin h0Þt þ y0ð0Þ; ð15Þ
h0ðtÞ ¼ h0ð0Þ;
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Fig. 2. Corresponding straight-line motion in global coordinates for fixed points A and B.



Fig. 3. Corresponding circular motion in global coordinates for fixed points A and B.
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where x0ð0Þ, y0ð0Þ, h0ð0Þ are its initial positions and orientation. It is straightforward to observe that fixed points
A ¼ ðr�i ;a�i ; b

�
i Þ ¼ ðV ;p;0Þ and B ¼ ðr�i ;a�i ; b

�
i Þ ¼ ðV ;0;pÞ correspond to rectilinear motion of the followers. Fig. 2 shows the cor-

responding ‘‘pursuit graph” (parametric plots of fxiðtÞ; yiðtÞg). It can be noted that for fixed point A, the leader ‘‘leads the
pack” and for fixed point B, it trails it.

When x–0, the trajectory of the leader becomes
x0ðtÞ ¼
V
x

sinðxt þ hÞ þ xc;

y0ðtÞ ¼ �
V
x

cosðxt þ hÞ þ yc; ð16Þ

h0ðtÞ ¼ xt þ h0ð0Þ; ð17Þ
where xc ¼ x0ð0Þ � ðV=xÞ sin h0ð0Þ and yc ¼ y0ð0Þ þ ðV=xÞ cos h0ð0Þ are the center of the circle of radius R0 ¼ ðV=xÞ traversed
by the leader. Without loss of generality we choose xc ¼ yc ¼ 0.
Fig. 4. Circular motion in global coordinates corresponding to the nonhyperbolic fixed point.



Fig. 5. Linear stability boundary for system (5) with spectra of A and B.
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Both fixed points A and B yield the following two equations for the locus of the ith follower:
r�2i ¼
V2

ð1þx2 � 2x2

k Þ
i
¼ x2

i þ y2
i þ x2

iþ1 þ y2
iþ1 � 2ðxixiþ1 þ yiyiþ1Þ; ð18Þ

sin a�i ¼
x� x

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2 � 2x2

k

q ¼ sin arctan
yiþ1 � yi

xiþ1 � xi
� hi

� �
¼ x2

i þ y2
i � xixiþ1 � yiyiþ1

r�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

iþ1 þ y2
iþ1

q : ð19Þ
Since x2
0 þ y2

0 ¼ ðV
2=x2Þ corresponds to the leader’s ðj ¼ 0Þ trajectory, combining (18) and (19) results
x2
1 þ y2

1 ¼
V2

x2

1
1þx2 � 2x2

k

¼ R2
1: ð20Þ
In general, using method of induction
x2
j þ y2

j ¼
V2

x2

1

ð1þx2 � 2x2

k Þ
j
¼ R2

j : ð21Þ
This means that in the equilibrium formation, the jth follower is circling the origin with radius Rj. Fig. 3 shows the corre-
sponding ‘‘pursuit graph” for fixed A and fixed point B for circular motion (x > 0).

It can be noted from (21) that depending on the value of k, the concentric circles traced out by the followers can be inside
ðk > 2Þ, on ðk ¼ 2Þ or outside ðk < 2Þ the leader’s circle. Also, analogous to Fig. 2, for k > 2 case, corresponding to fixed point
A, the leader ‘‘leads the pack”, i.e. the followers have positive phase difference with respect to the leader (Fig. 3a). Similarly,
for fixed point B, the leader ‘‘trails the pack”, i.e. the followers have negative phase difference with respect to the leader (Fig. 3b).

As discussed in the previous section, the two fixed points A and B coalesce to give rise to the single nonhyperbolic fixed

point ðr�i ;a�i ; b
�
i Þ ¼ ð V

ðx�1Þiþ1 ;
p
2 ;

p
2Þ ðk ¼ x > 1Þ or ðr�i ;a�i ; b

�
i Þ ¼ V

ð1�xÞiþ1 ;� p
2 ;

p
2

� �
(when k ¼ x < 1). The two cases are illustrated in

Fig. 4a and 4b
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Fig. 6. Variation of Poincaré–Lyapunov constant (D) with control gain (k).



Fig. 7. Phase portrait at point a when fixed point A is attracting and the corresponding pursuit graph in global coordinates.
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4. Local stability analysis

4.1. Linearization about the fixed points

The local stability of the fixed points is determined by the eigenstructure of the Jacobian evaluated at the fixed point. The
Jacobian of (5) is given by
Jp ¼

A0 0 � � � 0
B1 A1 � � � 0

..

. . .
. . .

. ..
.

0 � � � Bn�2 An�2

0
BBBB@

1
CCCCA; ð22Þ
where Ai, Bi and 0 are all 3� 3 matrices.



Fig. 8. Phase portrait at point b where the fixed point A is a weakly attracting one.
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A0 ¼

� cos b�0 V sina�0 r�0 sin b�0
� V

r�20
sina�0 V

r�
0

cos a�0 cos b�0

� V
r�20

sina�0 V
r�

0
cos a�0 ð1� kÞ cos b�0

0
BB@

1
CCA;

Ai ¼

� cos b�i r�i�1 sin a�i r�i sin b�i

� r�
i�1
r�2

i
sin a�i

r�
i�1
r�

i
cos a�i cos b�i

� r�
i�1
r�2

i
sin a�i

r�
i�1
r�

i
cos a�i ð1� kÞ cos b�i

0
BBB@

1
CCCA; i ¼ 1;2; . . . ;n� 2;

Bi ¼

� cos a�i 0 0
sin a�

i
r�

i
0 �k cos b�i�1

sin a�
i

r�
i

0 0

0
BBB@

1
CCCA; i ¼ 1;2; . . . ; n� 2:
The eigenvalues of (22) are also the eigenvalues of all Ai’s since the Jacobian (22) is lower triangular block matrix. The
characteristic polynomial for any of the Ai’s evaluated at the fixed points have the same form and are given by (þ and � cor-
responds to fixed point A and B, resp.):
k3 � p2k
2 þ p1k� p0 ¼ 0; ð23Þ
where p2 ¼ 1þ ð1=kÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �x2

p
, p1 ¼ x2 þ 2k� ð3x2=kÞ and p0 ¼ 1þx2 � ð2x2=kÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �x2

p
. The characteristic equation

corresponding to fixed point B can be obtained from that of fixed point A by the transformation k! �k, so the spectrum of B
is the reflection of that of A about the imaginary axis.

4.2. Linear stability boundary

A fixed point is stable when the corresponding characteristic polynomial is Hurwitz. Necessary and sufficient condition on
Hurwitz stability of a third-order polynomial is given on p. 132 of [32], requiring p0; p1; p2 > 0 and p1p2 > p0 for (23), which
results
2k3 þ k2 � 3x2 > 0; ð24Þ

1þx2 � 2x2

k
> 0: ð25Þ
From (12), the existence of the fixed points requires
k P x: ð26Þ
Inequalities (24)–(26) determine regions in the k–x parameter space where fixed points exists, as well as their stability.

These regions are characterized by the three curves x1ðkÞ ¼ k, x2ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2k3þk2

3

q
and x3ðkÞ ¼

ffiffiffiffiffiffi
k

2�k

q
ðk < 2Þ. Notice that when

k P 2, inequality (25) is alway satisfied, the stability region is determined only by the remaining two curves. It can be easily
verified that x1ðkÞ 6 x3ðkÞ when 0 < k < 2. Fig. 5 depicts the stability boundaries of this system. It can be observed that
when x ¼ 0 (straight line motion), fixed point A is always a stable node, while B is always an unstable one.



Fig. 9. Phase portrait at point c ðk ¼ 0:500; x ¼ 0:409Þ when a stable limit cycle is born near fixed point A and the corresponding pursuit graph.
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5. Andronov–Hopf bifurcation

When 0 < k < 1, the characteristic polynomial on the curve x2ðkÞ can be written as
kþ 1þ 1
k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �x2

q� �
k2 þx2 þ 2k� 3x2

k

� �
¼ 0:
This implies that for the fixed point A, the Jacobian has one negative real eigenvalue and a complex conjugate pair on the
imaginary axis. Below the curve x2ðkÞ, the Jacobian has one negative real eigenvalue and a pair of complex conjugates on
the left half plane, i.e. the fixed point is a stable node-focus. Between the curve x2ðkÞ and x1ðkÞ, the pair of complex con-
jugate eigenvalues have positive real part, which suggests the occurrence of Andronov–Hopf bifurcation by increasing k

through x2ðkÞ. On this curve, the critical bifurcation value of x is xc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2k3þk2

3

q
, and the root crossing velocity can be calcu-

lated as
Re
dk
dx

				
ðk;xcÞ

¼ 3
ffiffiffi
2
p

7kþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k
1� k

r
> 0: ð27Þ



Fig. 10. Pursuit graph and the corresponding FFT for five unicycle case at point c.
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Transversal root crossing is a necessary condition for the Andronov–Hopf bifurcation. It can be noted that for the case of n
unicycles, we have n� 1 identical triplets of such eigenvalues. This implies that the system undergoes Andronov–Hopf bifur-
cation when n ¼ 2, double-Hopf bifurcation when n ¼ 3 and in general, a bifurcation with ðn� 1Þ pairs of pure imaginary
eigenvalues. The rest of this section analyzes the two unicycle case in detail.

To show that the fixed point of the dynamical system (5) is weakly attracting/repelling on the stability boundary, one
needs to compute the so-called Poincaré–Lyapunov constant [33]. To find this constant, the original equation (5) is expanded
up to third order around fixed point A [34]
_w ¼ WðwÞ ¼ Jpwþ 1
2

fð2ÞðwÞ þ 1
6

fð3ÞðwÞ þ Oðw4Þ; ð28Þ
where w ¼ ðr � r�A;a� a�A; b� b�AÞ
T defines new coordinates which shift the fixed point A to the origin. In these new coordi-

nates, fð2ÞðwÞ and fð3ÞðwÞ are multilinear vector functions given by



leader
follower

Fig. 11. Phase portrait at point f near the fixed point A and the corresponding pursuit graph in global coordinates.
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Fig. 12. Time series and corresponding FFT for five unicycle case at point f.
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Fig. 13. Heteroclinic orbit in the phase portrait at point d.
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fð2Þi ¼
Xn

j;k¼1

o2WiðnÞ
onjonk

					
n¼0

wjwk; i ¼ 1;2;3
and
fð3Þi ¼
Xn

j;k;l¼1

o3WiðnÞ
onjonkonl

					
n¼0

wjwkwl; i ¼ 1;2;3:
In order to obtain the real Jordan canonical form, a linear transformation T needs to be constructed using the eigenvectors of
the Jacobian evaluated at xc. At the critical point, the pair of complex conjugate eigenvalues have the form k2;3 ¼ �ix0;
x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1� 2

3
k

� �
ð1� kÞ

s
> 0:
Let q2 2 C3 be the complex eigenvector corresponding to the eigenvalue k2. Then,
Jpq2 ¼ ix0q2; Jp �q2 ¼ �ix0 �q2:
Also, let q1 2 R3 be the real eigenvector corresponding to the eigenvalue k1 ¼ �ð1þ kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3ð1� kÞ

q
, i.e. Jpq1 ¼ k1q1. The trans-

formation matrix T is composed by 1
kq1k
ðReq2;�Imq2; kq1kq1Þ where q1 and q2 are given by
q2 ¼

2
ffiffi
6
p

Vk
9c
ffiffiffiffiffiffi
1�k
p þ i Vkð1�2

3kÞ
3x0c

1
1� 2

3 kþ i
ffiffi
6
p

x0
3
ffiffiffiffiffiffi
1�k
p

0
BB@

1
CCA; q1 ¼

�
ffiffi
6
p

Vð1þ2kÞ
3c
ffiffiffiffiffiffi
1�k
p

1
kþ 1

0
BB@

1
CCA;

c ¼ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 2kÞð1þ 2kÞð1� k2Þ

q
:

Introducing the transformation y ¼ T�1w,
_y ¼ Jy þ 1
2

gð2ÞðyÞ þ 1
6

gð3ÞðyÞ þ Oðy4Þ; ð29Þ
where the Jordan canonical form J is given by
J ¼ T�1JpT ¼
0 �x0 0
x0 0 0
0 0 k1

0
B@

1
CA:
In (29), the nonlinear vector functions in transformed coordinates are given by
gð2ÞðyÞ ¼ T�1fð2ÞðwÞjw¼Ty;

gð3ÞðyÞ ¼ T�1fð3ÞðwÞjw¼Ty:
Assuming that the center manifold has the quadratic form y3 ¼ 1
2ðh1y2

1 þ 2h2y1y2 þ h3y2
2Þ, one can reduce (29) into a two-

dimensional system up to third order



Fig. 14. System dynamics at point g.
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_y1 ¼ �x0y2 þ a20y2
1 þ a11y1y2 þ a02y2

2 þ a30y3
1 þ a21y2

1y2 þ a12y1y2
2 þ a03y3

2;

_y2 ¼ x0y1 þ b20y2
1 þ b11y1y2 þ b02y2

2 þ b30y3
1 þ b21y2

1y2 þ b12y1y2
2 þ b03y3

2:
ð30Þ
Using the 10 out of these 14 coefficients ajk; bjk, the so-called Poincaré–Lyapunov constant D can be calculated as [33]
D ¼ 1
8x
ðða20 þ a02Þða11 � b20 þ b02Þ þ ðb20 þ b02Þða02 � a20 � b11ÞÞ þ

1
8
ð3a30 þ a12 þ b21 þ 3b03Þ: ð31Þ
Fig. 6 illustrates the variation of D with respect to k. Note that based on the value of parameter V, the Andronov–Hopf bifur-
cation can be supercritical (D > 0) or subcritical (D < 0).
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6. Numerical results

6.1. Andronov–Hopf bifurcation

Fig. 7 shows the phase portrait corresponding to point a (k ¼ 0:500, x ¼ 0:301) on the stability chart (Fig. 5) and the asso-
ciated pursuit graph. Fixed point A is exponentially attracting here. Fig. 8 depicts the phase portrait associated with point b
(k ¼ 0:500, x ¼ 0:408) showing a weakly attracting fixed point A. There is a stable limit cycle born (supercritical Andronov–
Hopf bifurcation) around the fixed point A (point c) when x is increased through its critical value xc (phase portrait and
pursuit graph are shown in Fig. 9). The pursuit trajectory in global coordinates has two harmonic components.

Fig. 10a shows the ‘‘pursuit graph” of five unicycles (initial conditions are chosen slightly away from the equilibrium for-
mation) when x lies slightly above the curve x2ðkÞ (point c). It shows that the fourth follower exhibits most quasi-periodic
behavior. The vigor of such quasi-periodicity decreases with the proximity to the leader. Fig. 10b corroborates this fact by
showing that further the follower is, the wider its frequency spectrum becomes.

6.2. Fold–Hopf bifurcation

When k > 1, the characteristic polynomial on the stability curve x1ðkÞ can be written as
k3 þ ðx2 �xÞk ¼ 0;
implying that there is zero eigenvalue together with a pair of pure imaginary ones. This is a Fold–Hopf (a codimension-two)
bifurcation [33]. Fig. 11a and c shows the phase portrait of point f (k ¼ 1:20, x ¼ 1:20) on the stability curve k ¼ x and the
corresponding pursuit graph, while Fig. 11b shows the phase portrait of point e situated slightly below the point f.

For the case of five unicycles (initial conditions are chosen slightly away from the equilibrium formation), the time series
and the corresponding FFT for the followers are plotted in Fig. 12. It shows that the third and fourth follower exhibit complex
behavior with possibly heteroclinic bursts between quasi-periodic and chaotic behavior.

6.3. Global bifurcations

In addition to the Andronov–Hopf and Fold–Hopf bifurcations, preliminary simulations indicate global bifurcations
involving the destruction of heteroclinic orbits. Fig. 13 shows the phase portrait corresponding to point d (k ¼ 1:20,
x ¼ 0:60), with a heteroclinic orbit connecting fixed points A and B. When k is decreased below 1, it was observed that
the heteroclinic orbit disappear and the region of attraction for fixed point A shrinks significantly.

The dynamics is very interesting when k is around 1 (the intersection of the saddle-node and Andronov–Hopf bifurcation
curves). When ðk;xÞ ¼ ð1:01;1Þ (point g), one can observe a heteroclinic orbit or periodic motions containing higher har-
monics as shown in Fig. 14.

7. Conclusions

In this paper, the leader–follower pursuit of unicycles is studied. Local stability analysis around the equilibrium formation
has been performed. Analysis and numerical simulations have shown the existence of Andronov–Hopf and Fold–Hopf bifur-
cations on the stability boundary. In addition to the results provided here, the authors have also studied the effect of constant
communication delay between the unicycles in leader–follower configuration. Both analytical and numerical results (not
provided here) show that for a suitable distributed control law, where one may ignore the transients of the agent response,
the communication has no qualitative effect on the final consensus dynamics of the agent collective. As briefly stated in Sec-
tion 1, the future research direction includes the more generalized nonlinear dynamic analysis of two unicycles, not neces-
sarily in leader–follower configuration and extending the result for multiple unicycles with communication delay.
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